[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Super Efficiency of Multicriterion Network Equilibrium Model and Vector Variational Inequality

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The super efficiency of a vector variational inequality is considered in this paper. We show that for both the single and multiple criteria cases, a network equilibrium model can be recast as super efficient solutions to a kind of variational inequality. For the network equilibrium model with a vector-valued cost function, we derive the necessary and sufficient condition in terms of the super efficiency of a vector variational inequality by using the Gerstewitz’s function without any convex assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nagurney, A.: Network Economics: A Variational Inequality Approach. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  2. Giannessi, F.: Theorems of alternative, quadratic programs and complementarity problems. In: Cottle, R.W., Giannessi, F., Lions, J.L. (eds.) Variational Inequality and Complementary Problems, pp. 151–186. Wiley, New York (1980)

    Google Scholar 

  3. Chen, G.Y.: Existence of solutions for a vector variational inequality: an extension of the Hartman-Stampacchia Theorem. J. Optim. Theory Appl. 74, 445–456 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu, W., Gong, X.H.: Proper efficiency for set-valued vector optimization problems and vector variational inequalities. Math. Methods Oper. Res. 51, 443–457 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yang, X.M., Yang, X.Q.: Vector variational-like inequality with pseudoinvexity. Optimization 55, 157–170 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, C.R., Li, S.J.: Semicontinuity of the solution set map to a set-valued weak vector variational inequality. J. Ind. Manag. Optim. 3, 519–528 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (eds.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. University of California Press, Berkeley (1951)

    Google Scholar 

  8. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borwein, J.M.: Proper efficient points for maximization with respect to cones. SIAM J. Control Optim. 15, 57–63 (1977)

    Article  MATH  Google Scholar 

  10. Benson, H.P.: An improved definition of proper efficiency for vector maximization with respect to cones. J. Math. Anal. Appl. 71, 232–241 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Henig, M.I.: Proper efficiency with respect to cones. J. Optim. Theory Appl. 36, 387–407 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Borwein, J.M., Zhuang, D.: Super efficiency in vector optimization. Trans. Am. Math. Soc. 338, 105–122 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wardrop, J.: Some theoretical aspects of road traffic research. In: Proceedings of the Institute of Civil Engineers—Part II, vol. 1, pp. 325–378 (1952)

    Google Scholar 

  14. Chen, G.Y., Yen, N.D.: On the variational inequality model for network equilibrium. Internal Report 196, pp. 724–735, Department of Mathematics, University of Pisa (1993)

  15. Yang, X.Q., Goh, C.J.: On vector variational inequality: its application to vector equilibria. J. Optim. Theory Appl. 95, 431–443 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, G.Y., Goh, C.J., Yang, X.Q.: Vector network equilibrium problems and nonlinear scalarization methods. Math. Methods Oper. Res. 49, 239–253 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Cheng, T.C.E., Wu, Y.N.: A multi-product, multi-criterion supply-demand network equilibrium model. Oper. Res. 54, 544–554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, S.J., Teo, K.L., Yang, X.Q.: A remark on a standard and linear vector network equilibrium problem with capacity constraints. Eur. J. Oper. Res. 184, 13–23 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gerth, C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67, 297–320 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu, Y.N., Cheng, T.C.E.: Benson efficiency of a multi-criterion network equilibrium model. Pac. J. Optim. 5(3), 443–458 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunan Wu.

Additional information

Communicated by Guang-ya Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Peng, Y., Peng, L. et al. Super Efficiency of Multicriterion Network Equilibrium Model and Vector Variational Inequality. J Optim Theory Appl 153, 485–496 (2012). https://doi.org/10.1007/s10957-011-9950-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9950-z

Keywords

Navigation