Abstract
We propose relaxed lower semicontinuity properties for set-valued mappings, using weak τ-functions, and employ them to weaken known lower semicontinuity assumptions to get enhanced Ekeland’s variational principle for Pareto minimizers of set-valued mappings and underlying minimal-element principles. Our results improve and recover recent ones in the literature.
Similar content being viewed by others
References
Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)
Daneš, J.A.: A geometric theorem useful in nonlinear analysis. Bull. U.M.I. 6, 369–375 (1972)
Penot, J.P.: The drop theorem, the petal theorem and Ekeland’s variational principle. Nonlinear Anal. 10, 813–822 (1986)
Khanh, P.Q.: On Caristi–Kirk’s theorem and Ekeland’s variational principle for Pareto extrema. Bull. Pol. Acad. Sci., Math. 37, 1–6 (1989)
Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Canadian Mathematical Society Series. Springer, New York (2005)
Bao, T.Q., Khanh, P.Q.: Are several recent generalizations of Ekeland’s variational principle more general than the original principle? Acta Math. Vietnam. 28, 345–350 (2003)
Tataru, D.: Viscosity solutions of Hamilton–Jacobi equations with unbounded nonlinear terms. J. Math. Anal. Appl. 163, 345–392 (1992)
Kada, O., Suzuki, T., Takahashi, W.: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 44, 381–391 (1996)
Suzuki, T.: Generalized distance and existence theorems in the complete metric space. J. Math. Anal. Appl. 253, 440–458 (2001)
Lin, L.J., Du, W.S.: Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J. Math. Anal. Appl. 323, 360–370 (2006)
Al-Homidan, S., Ansari, Q.H., Yao, J.-C.: Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory. Nonlinear Anal. 69, 126–139 (2008)
Khanh, P.Q., Quy, D.N.: On generalized Ekeland’s variational principle and equivalent formulations for set-valued mappings. J. Glob. Optim. 49, 381–396 (2011)
Khanh, P.Q., Quy, D.N.: A generalized distance and Ekeland’s variational principle for vector functions. Nonlinear Anal. 73, 2245–2259 (2010)
Ansari, Q.H.: Vectorial form of Ekeland-type variational principle with applications to vector equilibrium problems and fixed point theory. J. Math. Anal. Appl. 334, 561–575 (2007)
Araya, Y.: Ekeland’s variational principle and its equivalent theorems in vector optimization. J. Math. Anal. Appl. 346, 9–16 (2008)
Bao, T.Q., Mordukhovich, B.S.: Variational principles for set-valued mappings with applications to multiobjective optimization. Control Cybern. 36, 531–562 (2007)
Bao, T.Q., Mordukhovich, B.S.: Relative Pareto minimizers to multiobjective problems: existence and optimality conditions. Math. Program., Ser. A 122, 301–347 (2010)
Bianchi, M., Kassay, G., Pini, R.: Existence of equilibria via Ekeland’s principle. J. Math. Anal. Appl. 305, 502–512 (2005)
Bianchi, M., Kassay, G., Pini, R.: Ekeland’s principle for vector equilibrium problems. Nonlinear Anal. 66, 1454–1464 (2007)
Chen, G.Y., Huang, X.X.: Ekeland’s variational principle for set valued mappings. Math. Methods Oper. Res. 48, 181–186 (1998)
Göpfert, A., Riahi, H., Tammer, Chr., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, Berlin (2003)
Göpfert, A., Tammer, Chr., Zălinescu, C.: On the vectorial Ekeland’s variational principle and minimal points in product spaces. Nonlinear Anal. 39, 909–922 (2000)
Li, S.J., Zhang, W.Y.: On Ekeland’s variational principle for set-valued mappings. Acta Math. Appl. Sin. English Ser. 23, 141–148 (2007)
Lin, L.J., Du, W.S.: Some equivalent formulations of generalized Ekeland’s variational principle and their applications. Nonlinear Anal. 67, 187–199 (2007)
Lin, L.J., Du, W.S.: On maximal element theorems, variants of Ekeland’s variational principle and their applications. Nonlinear Anal. 68, 1246–1262 (2008)
Chen, Y., Cho, Y.J., Yang, L.: Note on the results with lower semicontinuity. Bull. Korean Math. Soc. 39, 535–541 (2002)
Kuroiwa, D.: On set-valued optimization. Nonlinear Anal. 47, 1395–1400 (2001)
Turinici, M.: Maximality principles and mean value theorems. An. Acad. Bras. Ciênc. 53, 653–655 (1981)
Turinici, M.: Variational principles on semi-metric structures. Libertas Math. 20, 162–171 (2000)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by X.Q. Yang.
Rights and permissions
About this article
Cite this article
Khanh, P.Q., Quy, D.N. On Ekeland’s Variational Principle for Pareto Minima of Set-Valued Mappings. J Optim Theory Appl 153, 280–297 (2012). https://doi.org/10.1007/s10957-011-9957-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-011-9957-5