[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On Ekeland’s Variational Principle for Pareto Minima of Set-Valued Mappings

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We propose relaxed lower semicontinuity properties for set-valued mappings, using weak τ-functions, and employ them to weaken known lower semicontinuity assumptions to get enhanced Ekeland’s variational principle for Pareto minimizers of set-valued mappings and underlying minimal-element principles. Our results improve and recover recent ones in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Daneš, J.A.: A geometric theorem useful in nonlinear analysis. Bull. U.M.I. 6, 369–375 (1972)

    MATH  Google Scholar 

  3. Penot, J.P.: The drop theorem, the petal theorem and Ekeland’s variational principle. Nonlinear Anal. 10, 813–822 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Khanh, P.Q.: On Caristi–Kirk’s theorem and Ekeland’s variational principle for Pareto extrema. Bull. Pol. Acad. Sci., Math. 37, 1–6 (1989)

    Google Scholar 

  5. Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Canadian Mathematical Society Series. Springer, New York (2005)

    MATH  Google Scholar 

  6. Bao, T.Q., Khanh, P.Q.: Are several recent generalizations of Ekeland’s variational principle more general than the original principle? Acta Math. Vietnam. 28, 345–350 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Tataru, D.: Viscosity solutions of Hamilton–Jacobi equations with unbounded nonlinear terms. J. Math. Anal. Appl. 163, 345–392 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kada, O., Suzuki, T., Takahashi, W.: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 44, 381–391 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Suzuki, T.: Generalized distance and existence theorems in the complete metric space. J. Math. Anal. Appl. 253, 440–458 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lin, L.J., Du, W.S.: Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J. Math. Anal. Appl. 323, 360–370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Al-Homidan, S., Ansari, Q.H., Yao, J.-C.: Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory. Nonlinear Anal. 69, 126–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khanh, P.Q., Quy, D.N.: On generalized Ekeland’s variational principle and equivalent formulations for set-valued mappings. J. Glob. Optim. 49, 381–396 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khanh, P.Q., Quy, D.N.: A generalized distance and Ekeland’s variational principle for vector functions. Nonlinear Anal. 73, 2245–2259 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ansari, Q.H.: Vectorial form of Ekeland-type variational principle with applications to vector equilibrium problems and fixed point theory. J. Math. Anal. Appl. 334, 561–575 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Araya, Y.: Ekeland’s variational principle and its equivalent theorems in vector optimization. J. Math. Anal. Appl. 346, 9–16 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bao, T.Q., Mordukhovich, B.S.: Variational principles for set-valued mappings with applications to multiobjective optimization. Control Cybern. 36, 531–562 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Bao, T.Q., Mordukhovich, B.S.: Relative Pareto minimizers to multiobjective problems: existence and optimality conditions. Math. Program., Ser. A 122, 301–347 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bianchi, M., Kassay, G., Pini, R.: Existence of equilibria via Ekeland’s principle. J. Math. Anal. Appl. 305, 502–512 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bianchi, M., Kassay, G., Pini, R.: Ekeland’s principle for vector equilibrium problems. Nonlinear Anal. 66, 1454–1464 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, G.Y., Huang, X.X.: Ekeland’s variational principle for set valued mappings. Math. Methods Oper. Res. 48, 181–186 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Göpfert, A., Riahi, H., Tammer, Chr., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, Berlin (2003)

    MATH  Google Scholar 

  22. Göpfert, A., Tammer, Chr., Zălinescu, C.: On the vectorial Ekeland’s variational principle and minimal points in product spaces. Nonlinear Anal. 39, 909–922 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, S.J., Zhang, W.Y.: On Ekeland’s variational principle for set-valued mappings. Acta Math. Appl. Sin. English Ser. 23, 141–148 (2007)

    Article  MATH  Google Scholar 

  24. Lin, L.J., Du, W.S.: Some equivalent formulations of generalized Ekeland’s variational principle and their applications. Nonlinear Anal. 67, 187–199 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, L.J., Du, W.S.: On maximal element theorems, variants of Ekeland’s variational principle and their applications. Nonlinear Anal. 68, 1246–1262 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, Y., Cho, Y.J., Yang, L.: Note on the results with lower semicontinuity. Bull. Korean Math. Soc. 39, 535–541 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuroiwa, D.: On set-valued optimization. Nonlinear Anal. 47, 1395–1400 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Turinici, M.: Maximality principles and mean value theorems. An. Acad. Bras. Ciênc. 53, 653–655 (1981)

    MathSciNet  MATH  Google Scholar 

  29. Turinici, M.: Variational principles on semi-metric structures. Libertas Math. 20, 162–171 (2000)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Q. Khanh.

Additional information

Communicated by X.Q. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanh, P.Q., Quy, D.N. On Ekeland’s Variational Principle for Pareto Minima of Set-Valued Mappings. J Optim Theory Appl 153, 280–297 (2012). https://doi.org/10.1007/s10957-011-9957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9957-5

Keywords

Navigation