[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Further Results on Subgradients of the Value Function to a Parametric Optimal Control Problem

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper studies the first-order behavior of the value function of a parametric optimal control problem with nonconvex cost functions and control constraints. By establishing an abstract result on the Fréchet subdifferential of the value function of a parametric minimization problem, we derive a formula for computing the Fréchet subdifferential of the value function to a parametric optimal control problem. The obtained results improve and extend some previous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clarke, F.H.: Method of Dynamic and Nonsmooth Optimization. SIAM, Philadelphia (1989)

    Book  Google Scholar 

  2. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)

    Book  MATH  Google Scholar 

  3. Mordukhovich, B.S., Nam, N.M., Yen, N.D.: Subgradients of marginal functions in parametric mathematical programming. Math. Program. 116, 369–396 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mordukhovich, B.S., Nam, N.M.: Variational stability and marginal functions via generalized differentiation. Math. Oper. Res. 30, 800–816 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Moussaoui, M., Seeger, A.: Sensitivity analysis of optimal value functions of convex parametric programs with possibly empty solution sets. SIAM J. Optim. 4, 659–675 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Penot, J.-P.: Differentiability properties of optimal value functions. Can. J. Math. 56, 825–842 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rockafellar, R.T.: Hamilton–Jacobi theory and parametric analysis in fully convex problems of optimal control. J. Glob. Optim. 248, 419–431 (2004)

    Article  MathSciNet  Google Scholar 

  8. Cernea, A., Frankowska, H.: A connection between the maximum principle and dynamic programming for constrained control problems. SIAM J. Control Optim. 44, 673–703 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Moussaoui, M., Seeger, A.: Epsilon-maximum principle of Pontryagin type and perturbation analysis of convex optimal control problems. SIAM J. Control Optim. 34, 407–427 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rockafellar, R.T., Wolenski, P.R.: Convexity in Hamilton–Jacobi theory I: Dynamics and duality. SIAM J. Control Optim. 39, 1323–1350 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rockafellar, R.T., Wolenski, P.R.: Convexity in Hamilton–Jacobi theory II: Envelope representation. SIAM J. Control Optim. 39, 1351–1372 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Seeger, A.: Subgradient of optimal-value function in dynamic programming: the case of convex system without optimal paths. Math. Oper. Res. 21, 555–575 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Toan, N.T., Kien, B.T.: Subgradients of the value function to a parametric optimal control problem, set-valued and variational. Analysis 18, 183–203 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, New York (2005)

    MATH  Google Scholar 

  15. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I, Basis Theory. Springer, Berlin (2006)

    Google Scholar 

  16. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation II, Applications. Springer, Berlin (2006)

    Google Scholar 

  17. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  18. Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. T. Kien.

Additional information

Communicated by Boris Mordukhovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chieu, N.H., Kien, B.T. & Toan, N.T. Further Results on Subgradients of the Value Function to a Parametric Optimal Control Problem. J Optim Theory Appl 168, 785–801 (2016). https://doi.org/10.1007/s10957-011-9933-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9933-0

Keywords

Navigation