Abstract
This paper studies the first-order behavior of the value function of a parametric optimal control problem with nonconvex cost functions and control constraints. By establishing an abstract result on the Fréchet subdifferential of the value function of a parametric minimization problem, we derive a formula for computing the Fréchet subdifferential of the value function to a parametric optimal control problem. The obtained results improve and extend some previous results.
Similar content being viewed by others
References
Clarke, F.H.: Method of Dynamic and Nonsmooth Optimization. SIAM, Philadelphia (1989)
Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)
Mordukhovich, B.S., Nam, N.M., Yen, N.D.: Subgradients of marginal functions in parametric mathematical programming. Math. Program. 116, 369–396 (2009)
Mordukhovich, B.S., Nam, N.M.: Variational stability and marginal functions via generalized differentiation. Math. Oper. Res. 30, 800–816 (2005)
Moussaoui, M., Seeger, A.: Sensitivity analysis of optimal value functions of convex parametric programs with possibly empty solution sets. SIAM J. Optim. 4, 659–675 (1994)
Penot, J.-P.: Differentiability properties of optimal value functions. Can. J. Math. 56, 825–842 (2004)
Rockafellar, R.T.: Hamilton–Jacobi theory and parametric analysis in fully convex problems of optimal control. J. Glob. Optim. 248, 419–431 (2004)
Cernea, A., Frankowska, H.: A connection between the maximum principle and dynamic programming for constrained control problems. SIAM J. Control Optim. 44, 673–703 (2005)
Moussaoui, M., Seeger, A.: Epsilon-maximum principle of Pontryagin type and perturbation analysis of convex optimal control problems. SIAM J. Control Optim. 34, 407–427 (1996)
Rockafellar, R.T., Wolenski, P.R.: Convexity in Hamilton–Jacobi theory I: Dynamics and duality. SIAM J. Control Optim. 39, 1323–1350 (2000)
Rockafellar, R.T., Wolenski, P.R.: Convexity in Hamilton–Jacobi theory II: Envelope representation. SIAM J. Control Optim. 39, 1351–1372 (2000)
Seeger, A.: Subgradient of optimal-value function in dynamic programming: the case of convex system without optimal paths. Math. Oper. Res. 21, 555–575 (1996)
Toan, N.T., Kien, B.T.: Subgradients of the value function to a parametric optimal control problem, set-valued and variational. Analysis 18, 183–203 (2010)
Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, New York (2005)
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I, Basis Theory. Springer, Berlin (2006)
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation II, Applications. Springer, Berlin (2006)
Rudin, W.: Functional Analysis. McGraw-Hill, New York (1991)
Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland, Amsterdam (1979)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Boris Mordukhovich.
Rights and permissions
About this article
Cite this article
Chieu, N.H., Kien, B.T. & Toan, N.T. Further Results on Subgradients of the Value Function to a Parametric Optimal Control Problem. J Optim Theory Appl 168, 785–801 (2016). https://doi.org/10.1007/s10957-011-9933-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-011-9933-0