Abstract
In this paper we consider the linear symmetric cone programming (SCP). At a Karush-Kuhn-Tucker (KKT) point of SCP, we present the important conditions equivalent to the nonsingularity of Clarke’s generalized Jacobian of the KKT nonsmooth system, such as primal and dual constraint nondegeneracy, the strong regularity, and the nonsingularity of the B-subdifferential of the KKT system. This affirmatively answers an open question by Chan and Sun (SIAM J. Optim. 19:370–396, 2008).
Similar content being viewed by others
References
Chan, Z., Sun, D.: Constraint nondegeneracy, strong regularity and nonsingularity in semidefinite programming. SIAM J. Optim. 19, 370–396 (2008)
Eaves, B.C.: On the basic theorem of complementarity. Math. Program. 1, 68–75 (1971)
Gowda, M.S., Sznajder, R., Tao, J.: Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 393, 203–232 (2004)
Pang, J.-S., Qi, L.: Nonsmooth equations: motivation and algorithms. SIAM J. Optim. 3, 443–465 (1993)
Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vols. I and II. Springer, New York (2003)
Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)
Alizadeh, F., Haeberly, J.-P.A., Overton, M.L.: Complementarity and nondegeneracy in semidefinite programming. Math. Program. 77, 111–128 (1997)
Bonnans, J.F., Shapiro, A.: Nondegeneracy and quantitative stability of parameterized optimization problems with multiple solutions. SIAM J. Optim. 8, 940–946 (1998)
Flegel, M.L., Kanzow, C.: Equivalence of two nondegeneracy conditions for semidefinite programs. J. Optim. Theory Appl. 135, 381–397 (2007)
Kanzow, C., Ferenczi, I., Fukushima, M.: On the local convergence of semismooth Newton methods for linear and nonlinear second-order cone programs without strict complementarity. SIAM J. Optim. 20, 297–320 (2009)
Shapiro, A.: First and second order analysis of nonlinear semidefinite programs. Math. Program. 77, 301–320 (1997)
Sun, D.: The strong second order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications. Math. Oper. Res. 31, 761–776 (2006)
Yıldırım, E.A.: An interior-point perspective on sensitivity analysis in semidefinite programming. Math. Oper. Res. 28, 649–676 (2003)
Pataki, G.: The geometry of semidefinite programming. In: Wolkowicz, H., Vandenberghe, L., Saigal, R. (eds.) Handbook of Semidefinite Programming, pp. 29–65. Kluwer, Dordrecht (2000)
Pataki, G., Tunçel, L.: On the generic properties of convex optimization problems in conic form. Math. Program. A 89, 449–457 (2001)
Yıldırım, E.A.: Unifying optimal partition approach to sensitivity analysis in conic optimization. J. Optim. Theory Appl. 122, 405–423 (2004)
Shapiro, A., Fan, M.K.H.: On eigenvalue optimization. SIAM J. Optim. 5, 552–569 (1995)
Wang, Y.: Perturbation analysis of optimization problems over symmetric cones. Ph.D. Thesis, Dalian University of Technology (2008)
Koecher, M.: The Minnesota Notes on Jordan Algebras and Their Applications. Springer, Berlin (1999). Edited and Annotated by A. Brieg and S. Walcher
Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford University Press, London (1994)
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 957–972 (1977)
Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Sun, D., Sun, J.: Löwner’s operator and spectral functions on Euclidean Jordan algebras. Math. Oper. Res. 33, 421–445 (2008)
Kong, L.C., Sun, J., Xiu, N.H.: A regularized smoothing Newton method for symmetric cone complementarity problems. SIAM J. Optim. 19, 1028–1047 (2008)
Kong, L.C., Tunçel, L., Xiu, N.H.: Clarke generalized Jacobian of the projection onto symmetric cones. Set-Valued Var. Anal. 17, 135–151 (2009)
Sun, D., Sun, J.: Semismooth matrix valued functions. Math. Oper. Res. 27, 150–169 (2002)
Baes, M.: Spectral functions and smoothing techniques on Jordan algebras. Ph.D. Thesis, Université Catholique de Louvain (2006)
Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (2004)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)
Robinson, S.M.: Local structure of feasible sets in nonlinear programming. Part III: Stability and sensitivity. Math. Program. Stud. 30, 45–66 (1987)
Robinson, S.M.: Local structure of feasible sets in nonlinear programming. Part II: Nondegeneracy. Math. Program. Stud. 22, 217–230 (1984)
Robinson, S.M.: Constraint nondegeneracy in variational analysis. Math. Oper. Res. 28, 201–232 (2003)
Shapiro, A.: Sensitivity analysis of generalized equations. J. Math. Sci. 115, 2554–2565 (2003)
Clarke, F.H.: On the inverse function theorem. Pac. J. Math. 64, 97–102 (1976)
Gowda, M.S.: Inverse and implicit function theorems for H-differentiable and semismooth functions. Optim. Methods Softw. 19, 443–461 (2004)
Kummer, B.: Lipschitzian inverse functions, directional derivatives, and applications in C 1,1 optimization. J. Optim. Theory Appl. 70, 559–580 (1991)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. Fukushima.
The work was partly supported by a Discovery Grant from NSERC, and the National Natural Science Foundation of China (10831006) and the National Basic Research Program of China (2010CB732501). The authors thank two anonymous referees for their very useful comments. In particular, one of the referees pointed out a gap in our original proof of Proposition 2.7.
Rights and permissions
About this article
Cite this article
Kong, L., Tunçel, L. & Xiu, N. Equivalent Conditions for Jacobian Nonsingularity in Linear Symmetric Cone Programming. J Optim Theory Appl 148, 364–389 (2011). https://doi.org/10.1007/s10957-010-9758-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-010-9758-2