[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Generalized Variational Relation Problems with Applications

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we first obtain an existence theorem of the solutions for a variational relation problem. An existence theorem for a variational inclusion problem, a KKM theorem and an extension of the well know Ky Fan inequality will be established, as particular cases. Some applications concerning a saddle point problem with constraints, existence of a common fixed point for two mappings and an optimization problem with constraints, will be given in the last section of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. A Hitchhiker’s Guide. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Luc, D.T.: An abstract problem in variational analysis. J. Optim. Theory Appl. 138, 65–76 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Khanh, P.Q., Luc, D.T.: Stability of solutions in parametric variational relation problems. Set-Valued Anal. 16, 1015–1035 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lin, L.J., Wang, S.Y.: Simultaneous variational relation problems and related applications. Comput. Math. Appl. 58, 1711–1721 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lin, L.J., Ansari, Q.H.: Systems of quasi-variational relation problems with applications. Nonlinear Anal. 72, 1210–1220 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Luc, D.T., Sarabi, E., Soubeyran, A.: Existence of solutions in variational relation problems without convexity. J. Math. Anal. Appl. 364, 544–555 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lin, L.J.: Systems of generalized quasivariational inclusions problems with applications to variational analysis and optimization problems. J. Glob. Optim. 38, 21–39 (2007)

    Article  MATH  Google Scholar 

  8. Lin, L.J., Chuang, C.S.: Systems of nonempty intersection theorems with applications. Nonlinear Anal. 69, 4063–4073 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lin, L.J., Tu, C.I.: The studies of variational inclusions problems and variational disclusion problems with applications. Nonlinear Anal. 69, 1981–1998 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ansari, Q.H., Flores-Bazán, F.: Generalized vector quasi-equilibrium problems with applications. J. Math. Anal. Appl. 277, 246–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fu, J.Y.: Generalized vector quasi-equilibrium problems. Math. Methods Oper. Res. 52, 57–64 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Tan, N.X., Tinh, P.N.: On the existence of equilibrium points of vector functions. Numer. Funct. Anal. Optim. 19, 141–156 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fan, K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequality III, pp. 103–113. Academic Press, New York (1972)

    Google Scholar 

  14. Brézis, H., Nirenberg, L., Stampacchia, G.: A remark on Ky Fan’s minimax principle. Boll. Unione Mat. Ital. 6, 129–132 (1972)

    Google Scholar 

  15. Lin, L.J.: Systems of variational inclusion problems and differential inclusion problems with applications. J. Glob. Optim. 44, 579–591 (2009)

    Article  MATH  Google Scholar 

  16. Lin, L.J., Wang, S.Y., Chuang, C.S.: Existence theorems of systems of variational inclusion problems with applications. J. Glob. Optim. 40(4), 751–764 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lin, L.J., Yu, Z.T.: On some equilibrium problems for multimaps. J. Comput. Appl. Math. 129, 171–183 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Halpern, B.R., Bergman, G.M.: A fixed-point theorem for inward and outward maps. Trans. Am. Math. Soc. 130, 353–358 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fan, K.: A generalization of Tychnoff’s fixed point theorem. Math. Ann. 142, 305–310 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kakutani, S.: A generalization of Brouwer fixed point theorem. Duke Math. J. 8, 457–459 (1941)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lin, L.J.: System of generalized vector quasi-equilibrium problems with applications to fixed point theorems for a family of nonexpansive multivalued mappings. J. Global Optim. 34, 15–32 (2006)

    Article  MathSciNet  Google Scholar 

  22. Berge, C.: Espaces Topologique. Dunod, Paris (1959)

    Google Scholar 

  23. Yannelis, N.C., Prabhakar, N.D.: Existence of maximal elements and equilibria in linear topological spaces. J. Math. Econ. 12, 233–245 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Lin.

Additional information

Communicated by J.P. Crouzeix.

The authors would like to thank the referees for their suggestions, which have improved the presentation of the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaj, M., Lin, L.J. Generalized Variational Relation Problems with Applications. J Optim Theory Appl 148, 1–13 (2011). https://doi.org/10.1007/s10957-010-9741-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-010-9741-y

Keywords

Navigation