Abstract
We give simple linear algebraic proofs of the Eynard–Mehta theorem, the Okounkov-Reshetikhin formula for the correlation kernel of the Schur process, and Pfaffian analogs of these results. We also discuss certain general properties of the spaces of all determinantal and Pfaffian processes on a given finite set
Similar content being viewed by others
References
A. Borodin (1999) ArticleTitleBiorthogonal ensembles Nucl. Phys. B 536 704–732 Occurrence Handle1998NuPhB.536..704B Occurrence Handle0948.82018 Occurrence Handle99m:82022
A. Borodin A. Okounkov G. Olshanski (2000) ArticleTitleAsymptotics of Plancherel measures for symmetric groups J. Amer. Math. Soc. 13 491–515 Occurrence Handle10.1090/S0894-0347-00-00337-4 Occurrence Handle2001g:05103
D.J. Daley D. Vere–Jones (1988) An introduction to the theory of point processes Springer Berlin
B. Eynard M.L. Mehta (1998) ArticleTitleMatrices coupled in a chain I Eigenvalue correlations J. Phys. A. Math. Gen. 31 4449–4456 Occurrence Handle1998JPhA...31.4449E Occurrence Handle99g:82028
P.J. Forrester T. Nagao G. Honner (1999) ArticleTitleCorrelations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges Nucl. Phys. B 553 IssueID3 601–643 Occurrence Handle10.1016/S0550-3213(99)00272-2 Occurrence Handle1999NuPhB.553..601F Occurrence Handle2001c:82037
Johansson K.,. Random Growth and Random matrices, (European Congress of Mathematics, Barcelona Vol. I, Birkhäuser 2001).
K. Johansson (2003) ArticleTitleDiscrete polynuclear growth and determinantal processes, Comm. Math. Phys. 242 277–329 Occurrence Handle2003CMaPh.242..277J Occurrence Handle1031.60084 Occurrence Handle2004m:82096
Johansson K.,. The Arctic circle boundary and the Airy process, math.PR/0306216.
Johansson K.,. Non-intersecting, simple, symmetric random walks and the extended Hahn kernel, math.PR/0409013.
O. Macchi (1975) ArticleTitleThe coincidence approach to stochastic point processes Adv. Appl. Prob. 7 83–122 Occurrence Handle0366.60081 Occurrence Handle52 #1876
Macdonald I.G.,. Symmetric functions and Hall polynomials, 2nd ed. (Oxford University Press 1995).
Matsumoto S.,. Correlation functions of the shifted Schur measure, math.CO/0312373.
Matsumoto S.,. Alpha-Pfaffian, Pfaffian point process and shifted Schur measure, math.CO/0411277.
T. Nagao P.J. Forrester (1998) ArticleTitleMultilevel dynamical correlation function for Dyson’s brownian motion model of random matrices Phys Lett. A 247 42–46 Occurrence Handle10.1016/S0375-9601(98)00602-1 Occurrence Handle1998PhLA..247...42N
T. Nagao P.J. Forrester (1999) ArticleTitleQuaternion determinant expressions for multilevel dynamical correlation functions of parametric random matrices Nucl. Phys. B 563 IssueID3 547–572 Occurrence Handle10.1016/S0550-3213(99)00588-X Occurrence Handle1999NuPhB.563..547N Occurrence Handle2001a:82044
A. Okounkov N. Reshetikhin (2003) ArticleTitleCorrelation functions of Schur process with applications to local geometry of a random 3–dimensional Young diagram J. Amer. Math. Soc. 16 581–603 Occurrence Handle10.1090/S0894-0347-03-00425-9 Occurrence Handle2004b:60033
Rains E.,. Correlation functions for symmetrized increasing subsequences, math.CO/ 0006097.
T. Sasamoto T. Imamura (2004) ArticleTitleFluctuations of a one-dimensional polynuclear growth model in a half space J. Stat. Phys. 115 IssueID3–4 749–803 Occurrence Handle2005d:82112
C.A. Tracy H. Widom (1998) ArticleTitleCorrelation functions, cluster functions and spacing distributions for random matrices J. Stat. Phys. 92 809–835 Occurrence Handle10.1023/A:1023084324803 Occurrence Handle99m:82030
C.A. Tracy H. Widom (2004) ArticleTitleDifferential equations for Dyson processes Comm. Math. Phys. 252 IssueID1–3 7–41 Occurrence Handle2004CMaPh.252....7T Occurrence Handle2103903
C.A. Tracy H. Widom (2004) ArticleTitleA limit theorem for shifted Schur measures, Duke Math. J. 123 171–208 Occurrence Handle2006c:60028
J. Weyman A. Zelevinsky (1996) ArticleTitleSingularities of hyperdeterminants Ann. Inst. Fourier (Grenoble) 46 IssueID3 591–644 Occurrence Handle97m:14050
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Borodin, A., Rains, E.M. Eynard–Mehta Theorem, Schur Process, and their Pfaffian Analogs. J Stat Phys 121, 291–317 (2005). https://doi.org/10.1007/s10955-005-7583-z
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10955-005-7583-z