[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Priority Service Provisioning and Max–Min Fairness: A Utility-Based Flow Control Approach

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

In this paper, a novel priority assignment scheme is proposed for priority service networks, in which each link sets its own priority threshold, namely, the lowest priority the link is willing to support for the incoming packets without causing any congestion. Aiming at a reliable transmission, the source then assigns each originated packet the maximum priority value required along its path, because links may otherwise discard the incoming packets which do not meet the corresponding priority requirements. It is shown that if each source sends the traffic at a rate that is reciprocal to the specified highest priority, a bandwidth max–min fairness is achieved in the network. Furthermore, if each source possesses a utility function of the available bandwidth and sends the traffic at a rate so that the associated utility is reciprocal to the highest link priority, a utility max–min fairness is achieved. For general networks without priority services, the resulting flow control strategy can be treated as a unified framework to achieve either bandwidth max–min fairness or utility max–min fairness through link pricing policy. More importantly, the utility function herein is only assumed to be strictly increasing and does not need to satisfy the strictly concave condition, the new algorithms are thus not only suitable for the traditional data applications with elastic traffic, but are also capable of handling real-time applications in the Future Internet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For the scalability, it can be further assumed that \(0\le U_{s}(x_{s})\le 1\) and \(U_{s}(M_{s})=1\).

  2. Here we use a deterministic approach to estimate the buffer dynamics, and assume the updating time interval is 1. Otherwise

    $$b_{l}(t)=\left[ b_{l}(t-1)+ \mathsf{time\_interval}\left( x^{l}(t)-c_{l}\right) \right] ^{+}$$

    and this only results in a weighting coefficient change from \(\gamma\) to \(\gamma /\mathsf{time\_interval}\) in the new link algorithm (20).

References

  1. Differentiated Services (Diffserv) Working Group. The Internet Engineering Task Force. Accessed Oct 2015 (online). http://datatracker.ietf.org/wg/diffserv/charter/

  2. Kelly, F.P., Maulloo, A., Tan, D.: Rate control for communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49(3), 237–252 (1998)

    Article  MATH  Google Scholar 

  3. Low, S.H., Lapsley, D.E.: Optimization flow control—I: basic algorithm and convergence. IEEE/ACM Trans. Netw. 7(6), 861–874 (1999)

    Article  Google Scholar 

  4. Vo, P.L., Tran, N.H., Hong, C.S., Lee, S.: Network utility maximisation framework with multiclass traffic. IET Netw. 2(3), 152–161 (2013)

    Article  Google Scholar 

  5. Li, S., Sun, W., Tian, N.: Resource allocation for multi-class services in multipath networks. Perform. Eval. 92, 1–23 (2015)

    Article  Google Scholar 

  6. Xiao, M., Shroff, N.B., Chong, E.K.P.: A utility-based power-control scheme in wireless cellular systems. IEEE/ACM Trans. Netw. 11(2), 210–221 (2003)

    Article  Google Scholar 

  7. Gong, S.-L., Roh, H.-T., Lee, J.-W.: Cross-layer and end-to-end optimization for the integrated wireless and wireline network. J. Commun. Netw. 14(5), 554–565 (2012)

    Article  Google Scholar 

  8. Tychogiorgos, G., Leung, K.K.: Optimization-based resource allocation in communication networks. Comput. Netw. 66, 32–45 (2014)

    Article  Google Scholar 

  9. Xue, Y., Li, B., Nahrstedt, K.: Optimal resource allocation in wireless ad hoc networks: a price-based approach. IEEE Trans. Mob. Comput. 5(4), 347–364 (2006)

    Article  Google Scholar 

  10. Hou, Y.T., Shi, Y., Sherali, H.D.: Rate allocation and network lifetime problems for wireless sensor networks. IEEE/ACM Trans. Netw. 16(2), 321–334 (2008)

    Article  Google Scholar 

  11. Jin, J., Palaniswami, M., Krishnamachari, B.: Rate control for heterogeneous wireless sensor networks: characterization, algorithms and performance. Comput. Netw. 56(17), 3783–3794 (2012)

    Article  Google Scholar 

  12. Tychogiorgos, G., Gkelias, A., Leung, K.K.: A non-convex distributed optimization framework and its application to wireless ad-hoc networks. IEEE Trans. Wirel. Commun. 12(9), 4286–4296 (2013)

    Article  Google Scholar 

  13. Bertsekas, D., Gallager, R.: Data Networks, 2nd edn. Prentice-Hall, Upper Saddle River (1992)

    MATH  Google Scholar 

  14. Mo, J., Walrand, J.: Fair end-to-end window-based congestion control. IEEE/ACM Trans. Netw. 8(5), 556–567 (2000)

    Article  Google Scholar 

  15. Cao, Z., Zegura, E.W.: Utility max–min: an application oriented bandwidth allocation scheme. In: Proceedings of the IEEE INFOCOM 1999, pp. 793–801 (1999)

  16. Jin, J., Wang, W.H., Palaniswami, M.: A simple framework of utility max–min flow control using sliding mode approach. IEEE Commun. Lett. 13(5), 360–362 (2009)

    Article  Google Scholar 

  17. Han, B.Q., Feng, G.F., Chen, Y.F.: Heterogeneous resource allocation algorithm for ad hoc networks with utility fairness. Int. J. Distrib. Sens. Netw. 2015, 686189 (2015)

    Article  Google Scholar 

  18. Marbach, P.: Priority service and max–min fairness. IEEE/ACM Trans. Netw. 11(5), 733–746 (2003)

    Article  Google Scholar 

  19. Marbach, P.: Analysis of a static pricing scheme for priority services. IEEE/ACM Trans. Netw. 12(2), 312–325 (2004)

    Article  Google Scholar 

  20. Hahne, E.L.: Round-robin scheduling for max–min fairness in data networks. IEEE J. Sel. Areas Commun. 9(7), 1024–1039 (1991)

    Article  Google Scholar 

  21. Srikant, R.: The Mathematics of Internet Congestion Control. Birkhauser, Cambridge (2004)

    Book  MATH  Google Scholar 

  22. Wang, W.H., Palaniswami, M., Low, S.H.: Application-oriented flow control: fundamentals, algorithms and fairness. IEEE/ACM Trans. Netw. 14(6), 1282–1291 (2006)

    Article  Google Scholar 

  23. Jin, J., Wang, W.H., Palaniswami, M.: Utility max–min fair resource allocation for communication networks with multipath routing. Comput. Commun. 32(17), 1802–1809 (2009)

    Article  Google Scholar 

  24. Harks, T., Poschwatta, T.: Congestion control in utility fair newworks. Comput. Netw. 52, 2947–2960 (2008)

    Article  MATH  Google Scholar 

  25. Shenker, S.: Fundamental design issues for the Future Internet. IEEE J. Sel. Areas Commun. 13(7), 1176–1188 (1995)

    Article  Google Scholar 

  26. Xiong, N., Jia, X., Yang, L.T., Vasilakos, A.V., Li, Y., Pan, Y.: A distributed efficient flow control scheme for multirate multicast networks. IEEE Trans. Parallel Distrib. Syst. 21(9), 1254–1266 (2010)

    Article  Google Scholar 

  27. Jin, J., Yuan, D., Zheng, J., Dong, Y.N.: Sliding mode-like congestion control for communication networks with heterogeneous applications. In: Proceedings of the IEEE ICC 2015, London, UK (2015)

  28. Radunovic, B., Boudec, J.-Y.L.: A unified framework for max–min and min–max fairness with applications. IEEE/ACM Trans. Netw. 15(5), 1073–1083 (2007)

    Article  Google Scholar 

  29. Li, Y., Papachristodoulou, A., Chiang, M., Calderbank, A.R.: Congestion control and its stability in networks with delay sensitive traffic. Comput. Netw. 55, 20–32 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by Swinburne University of Technology under the Early Research Career Scheme 2014. It is also partly supported by funding from the Faculty of Engineering and Information Technologies, The University of Sydney, under the Faculty Research Cluster Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Palaniswami, M., Yuan, D. et al. Priority Service Provisioning and Max–Min Fairness: A Utility-Based Flow Control Approach. J Netw Syst Manage 25, 397–415 (2017). https://doi.org/10.1007/s10922-016-9395-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-016-9395-7

Keywords

Navigation