[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Learning Automata-Based Cognitive Radio for Clustered Wireless Ad-Hoc Networks

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

In current wireless networks, the radio systems are regulated by a fixed spectrum assignment strategy. This policy partitions the whole radio spectrum into a fixed number of radio ranges, each exclusively assigned to a specific user. Such a spectrum assignment strategy leads to an undesirable condition under which some systems only use a small portion of the allocated spectrum while the others have very serious spectrum insufficiency. The learning automata-based cognitive radio which is proposed in this paper is a highly potential technology to address the spectrum scarcity challenges in wireless ad hoc networks. This paper proposes a learning automata-based dynamic frame length TDMA scheme for slot assignment in clustered wireless ad-hoc networks with unknown traffic parameters, where the intra-cluster communications are scheduled by a TDMA scheme, and a CDMA scheme is overlaid on the TDMA to handle an interference-free inter-cluster communication. In this method, each cluster-head is responsible for a collision-free slot assignment within the cluster and determines the input traffic parameters of its own cluster members. It then takes these traffic parameters into consideration for an optimal channel access scheduling in the cluster. The medium access control layer in each cluster is based on a time division multiple access (TDMA) scheme, in which each host is assigned a fraction of the TDMA frame proportional to its traffic load. The simulation experiments show the superiority of our proposed slot assignment algorithm over the existing methods in terms of the channel utilization, control overhead, and throughput, specifically, under bursty traffic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ghozzi, M., Dohler, M., Marx, F., Palicot, J.: Cognitive radio: Methods for the detection of free bands. Comptes. Rendus. Physique. 7, 794–804 (2006)

    Article  Google Scholar 

  2. Raychaudhuri, D., Jing, X., Seskar, I., Le, K., Evans, J.B.: Cognitive radio technology: from distributed spectrum coordination to adaptive network collaboration. Pervasive Mob. Comput. 4, 278–302 (2008)

    Article  Google Scholar 

  3. Akyildiz, I.F., Lee, W.-Y., Chowdhury, K.R.: CRAHNs: cognitive radio ad hoc networks. Ad Hoc. Netw. 7, 810–836 (2009)

    Article  Google Scholar 

  4. Saleh, A.A.M.: Inter-modulation analysis of FDMA satellite systems employing compensated and uncompensated TWTs. IEEE Trans. Commun. 30(5), 1233–1242 (1982)

    Article  Google Scholar 

  5. Lee, W.C.Y.: Overview of cellular CDMA. IEEE Trans. Veh. Technol. 40(2), 291–302 (1991)

    Article  Google Scholar 

  6. Sekimoto, T., Puente, J.G.: A satellite time-division multiple-access experiment. IEEE Trans. Commun. 16(4), 581–588 (1968)

    Article  Google Scholar 

  7. Capone, A., Gerla, M., Kapoor, R.: Efficient polling schemes for bluetooth picocells. In: Proceeding of the IEEE International Conference on Communications (ICC2001), vol. 7, pp. 1990–1994. Finland (2001)

  8. Chrapkowski, A., Grube, G.: Mobile trunked radio system design and simulation. In: Proceedings of the IEEE Vehicular Technology Conference, pp. 245–250 (1991)

  9. Goodman, D.J., Valenzuela, R.A., Gayliard, K.T., Ramamurthi, B.: Packet reservation multiple-access for local wireless communications. IEEE Trans. Commun. 37, 885–890 (1989)

    Article  Google Scholar 

  10. Abramson, N.: The ALOHA system-another alternative for computer communications. In: Proceedings of the AFIPS Fall Joint Computer Conference, vol. 37, pp. 281–285 (1970)

  11. Kleinrock, L., Tobagi, F.A.: Packet switching in radio channels: part I-carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Trans. Commun. 23(12), 1400–1416 (1975)

    Article  MATH  Google Scholar 

  12. Papadimitriou, G.I., Pomportsis, A.S.: Self-adaptive TDMA protocols: a learning-automata-based approach. In: Proceedings of International Conference on Networks, pp. 85–90 (1999)

  13. Kim, S., Kim, J.I.: An adaptive time slot assignment algorithm for variable bandwidth switching systems. Comput. Oper. Res. 27, 423–435 (2000)

    Article  MATH  Google Scholar 

  14. Xin, L., Qionghia, D., Qiu-feng, W.: Time allocation scheme in IEEE 802.15.3 TDMA mechanism. J. Zhejiang Univ. Sci. A. 7, 159–164 (2006)

    MATH  Google Scholar 

  15. Kanzaki, A., Uemukai, T., Hara, T., Nishio, S.: Dynamic TDMA slot assignment in ad-hoc networks. In: Proceedings of 17th IEEE International Conference on Advanced Information Networking and Applications (AINA’03), pp. 330–335 (2003)

  16. Wu, C.M.: Dynamic frame length channel assignment in wireless multihop ad-hoc networks. J. Comput. Commun. 30, 3832–3840 (2007)

    Article  Google Scholar 

  17. Li, W., Wei, J.B., Wang, S.: An evolutionary-dynamic TDMA slot assignment protocol for ad-hoc networks. Wirel. Commun. Netw. Conf. 138–142 (2007)

  18. Mo, R., Chew, Y.H.: System throughput analysis of rate adaptive TDMA system supporting two class services. Wirel. Netw. 11, 687–695 (2005)

    Article  Google Scholar 

  19. Furuya, Y., Akaiwa, Y.: Channel segregation, a distributed adaptive channel allocation scheme for mobile communication systems. IEICE Trans. E74, 1531–1537 (1991)

    Google Scholar 

  20. Gerla, M., Tsai, J.: Multicluster, mobile, multimedia radio network. ACM/Baltzer J. Wirel. Netw. 1(3), 255–265 (1995)

    Article  Google Scholar 

  21. Akaiwa, Y., Andoh, H.: Channel segregation—a self-organized dynamic channel allocation method: application to TDMA/FDMA microcellular system. IEEE J. Sel. Areas Commun. 11(6), 949–954 (1993)

    Article  Google Scholar 

  22. Wu, C.-M.: Hybrid dynamic channel assignment in clustered wireless multihop CDMA/TDMA ad-hoc networks. Wirel. Pers. Commun. 42, 85–105 (2007)

    Article  Google Scholar 

  23. Perez-Romero, J., Sallent, O., Agusti, R.: On the optimum traffic allocation in heterogeneous CDMA/TDMA networks. IEEE Trans. Wirel. Commun. 6(9), 3170–3174 (2007)

    Article  Google Scholar 

  24. Navaie, K., Yanikomeroglu, H.: Optimal downlink resource allocation for non-real time traffic in cellular CDMA/TDMA networks. IEEE Commun. Lett. 10(4), 278–280 (2006)

    Article  Google Scholar 

  25. Navaie, K., Yanikomeroglu, H.: Downlink joint base-station assignment and packet scheduling algorithm for cellular CDMA/TDMA networks. IEEE Int. Conf. Commun. 4339–4344 (2006)

  26. Vannithamby, R., Sousa, E.S.: An optimum rate/power allocation scheme for downlink in hybrid CDMA/TDMA cellular system. In: 52nd IEEE Conference on Vehicular Technology, pp. 1734–1738 (2000)

  27. Karp, R.M.: Reducibility among combinatorial problems, pp. 85–103. Complexity of Computer Computations, Plenum Press, USA (1972)

    Google Scholar 

  28. Akbari Torkestani, J., Meybodi, M.R.: Graph coloring problem based on learning automata. In: Proceedings of International Conference on Information Management and Engineering (ICIME 2009), pp. 718–772. Malaysia (2009)

  29. Narendra, K.S., Thathachar, K.S.: Learning automata: an introduction. Printice-Hall, New York (1989)

    Google Scholar 

  30. Thathachar, M.A.L., Sastry, P.S.: A hierarchical system of learning automata that can learn the globally optimal path. Inf. Sci. 42, 743–766 (1997)

    MathSciNet  Google Scholar 

  31. Thathachar, M.A.L., Harita, B.R.: Learning automata with changing number of actions. IEEE Trans. Syst. Man Cybern. SMG17, 1095–1100 (1987)

    Google Scholar 

  32. Lakshmivarahan, S., Thathachar, M.A.L.: Bounds on the convergence probabilities of learning automata. IEEE Trans. Syst. Man Cybern. SMC-6, 756–763 (1995)

    MathSciNet  Google Scholar 

  33. Narendra, K.S., Thathachar, M.A.L.: On the behavior of a learning automaton in a changing environment with application to telephone traffic routing. IEEE Trans. Syst. Man Cybern. SMC-l0(5), 262–269 (1980)

    Article  Google Scholar 

  34. Akbari Torkestani, J., Meybodi, M.R.: A learning automata-based heuristic algorithm for solving the minimum spanning tree problem in stochastic graphs. J. Supercomput., in press (2010)

  35. Akbari Torkestani, J., Meybodi, M.R.: Learning automata-based algorithms for finding minimum weakly connected dominating set in stochastic graphs. Int. J. Uncertain. Fuzziness Knowl. Based Syst., in press (2010)

  36. Akbari Torkestani, J., Meybodi, M.R.: A new vertex coloring algorithm based on variable action-set learning automata. J. Comput. Inform. 29(3), 1001–1020 (2010)

    Google Scholar 

  37. Akbari Torkestani, J., Meybodi, M.R.: Mobility-based multicast routing algorithm in wireless mobile ad hoc networks: a learning automata approach. J. Comput. Commun. 33, 721–735 (2010)

    Article  Google Scholar 

  38. Akbari Torkestani, J., Meybodi, M.R.: “Weighted Steiner Connected Dominating Set and its Application to Multicast Routing in Wireless MANETs,” Wireless Personal Communications. Springer, Netherlands (2010). doi:10.1007/s11277-010-9936-4

  39. Akbari Torkestani, J., Meybodi, M.R.: An efficient cluster-based CDMA/TDMA scheme for wireless mobile ad-hoc networks: a learning automata approach. J. Netw. Comput. Appl. 33, 477–490 (2010)

    Article  Google Scholar 

  40. Akbari Torkestani, J., Meybodi, M.R.: Clustering the wireless ad-hoc networks: a distributed learning automata approach. J. Parallel Distrib. Comput. 70, 394–405 (2010)

    Article  Google Scholar 

  41. Akbari Torkestani, J., Meybodi, M.R.: An intelligent backbone formation algorithm in wireless ad hoc networks based on distributed learning automata. J. Comput. Netw. 54, 826–843 (2010)

    Article  MATH  Google Scholar 

  42. Meybodi, M.R.: Learning automata and its application to priority assignment in a queuing system with unknown characteristics. Ph.D. thesis, Department of Electrical Engineering and Computer Science, University of Oklahoma, Norman, Oklahoma, USA (1983)

  43. Hashim, A.A., Amir, S., Mars, P.: Application of learning automata to data compression. In: Narendra, K.S. (ed.) Adaptive and Learning Systems, pp. 229–234. Plenum Press, New York (1986)

    Google Scholar 

  44. Oommen, B.J., Hansen, E.R.: List organizing strategies using stochastic move-to-front and stochastic move-to-rear operations. SIAM J. Comput. 16, 705–716 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  45. Unsal, C., Kachroo, P., Bay, J.S.: Multiple stochastic learning automata for vehicle path control in an automated highway system. IEEE Trans. Syst. Man Cybern. Part A 29, 120–128 (1999)

    Article  Google Scholar 

  46. Barto, A.G., Anandan, P.: Pattern-recognizing stochastic learning automata. IEEE Trans. Syst. Man Cybern. SMC-15, 360–375 (1985)

    MathSciNet  Google Scholar 

  47. Akbari Torkestani, J., Meybodi, M.R.: Approximating the minimum connected dominating set in stochastic graphs based on learning automata. In: Proceedings of International Conference on Information Management and Engineering (ICIME 2009), pp. 672–676. Malaysia (2009)

  48. Richard Lin, C.R., Gerla, M.: Adaptive clustering for mobile wireless networks. IEEE J. Sel. Areas Commun. 15(7), 1265–1275 (1997)

    Article  Google Scholar 

  49. Hod, T.C., Wu, C.M., Chan, M.C.: Dynamic channel assignment in clustered multihop CDMA/TDMA ad-hoc networks. In: Proceedings of 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 145–149 (2004)

  50. Chen, Y.P., Listman, A.L.: Maintaining weakly-connected dominating sets for clustering ad-hoc networks. Ad-hoc Netw. 3, 629–642 (2005)

    Article  Google Scholar 

  51. Esnaashari, M., Meybodi, M.R.: A cellular learning automata based clustering algorithm for wireless sensor networks. Sens. Lett. 6, 723–735 (2008)

    Article  Google Scholar 

  52. Hou, T.C., Tsai, T.J.: On the cluster based dynamic channel assignment for multihop ad hoc networks. J. Commun. Netw. 4(1), 40–47 (2002)

    Google Scholar 

  53. Yeo, J., Lee, H., Kim, S.: An efficient broadcast scheduling algorithm for TDMA ad-hoc networks. Comput. Oper. Res. 29, 1793–1806 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Akbari Torkestani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbari Torkestani, J., Meybodi, M.R. A Learning Automata-Based Cognitive Radio for Clustered Wireless Ad-Hoc Networks. J Netw Syst Manage 19, 278–297 (2011). https://doi.org/10.1007/s10922-010-9178-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-010-9178-5

Keywords

Navigation