Abstract
Polyhydroxybutyrate (PHB) films nanoreinforced with hydrolyzed cellulose nanocrystals (CNC) and bacterial cellulose (BC) were prepared by solvent casting. The influence of different cellulose nanoparticles content (2, 4 and 6 wt% of CNC and 2 wt% of BC) on the PHB properties was studied. CNC nanocomposites presented good dispersion of the nanocrystals, improving transparency, mechanical and barrier properties of the PHB films. On the other hand, reduced thermal stability and mechanical properties were yielded by BC addition due to the intrinsic lower degradation temperature and higher length of the BC nanofibrils compared to CNC. Nanocomposites performance variation is mainly caused by the marked difference in nanoparticles structure. It was demonstrated that PHB–CNC films exhibited higher performance enhancement without detrimental effect of the pristine PHB properties.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Lucas N, Bienaime C, Belloy C et al (2008) Polymer biodegradation: mechanisms and estimation techniques—a review. Chemosphere 73:429–442. doi:10.1016/j.chemosphere.2008.06.064
Savenkova L, Gercberga Z, Nikolaeva V et al (2000) Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochem 35:573–579. doi:10.1016/S0032-9592(99)00107-7
Bucci DZ, Tavares LBB, Sell I (2007) Biodegradation and physical evaluation of PHB packaging. Polym Test 26:908–915. doi:10.1016/j.polymertesting.2007.06.013
Plackett D, Vázquez A (2004) Natural polymer sources. In: Baillie C (ed) Green Compos. Woodhead Publishing Limited, Cambridge, pp 123–153
Sangkharak Kanokphorn (2011) Utilization of biodiesel waste as a feedstock for the production of polyhydroxybutyrate by Cupriavidus necator. Afr J Biotechnol 10:17812–17824. doi:10.5897/AJB11.2184
Avella M, Martuscelli E, Raimo M (2000) Properties of blends and composites based on poly(3-hydroxy)butyrate (PHB) and poly(3-hydroxybutyrate-hydroxyvalerate) (PHBV) copolymers. J Mater Sci 35:523–545
Erceg M, Kovačić T, Klarić I (2005) Thermal degradation of poly(3-hydroxybutyrate) plasticized with acetyl tributyl citrate. Polym Degrad Stab 90:313–318. doi:10.1016/j.polymdegradstab.2005.04.048
Angelini S, Cerruti P, Immirzi B et al (2016) Acid-insoluble lignin and holocellulose from a lignocellulosic biowaste: bio-fillers in poly(3-hydroxybutyrate). Eur Polym J 76:63–76. doi:10.1016/j.eurpolymj.2016.01.024
Wang S, Song C, Chen G et al (2005) Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite. Polym Degrad Stab 87:69–76. doi:10.1016/j.polymdegradstab.2004.07.008
Díez-Pascual AM, Díez-Vicente AL (2014) Poly(3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties. Int J Mol Sci 15:10950–10973. doi:10.3390/ijms150610950
de Carvalho KCC, Montoro SR, Cioffi MOH, Voorwald HJC (2016) Polyhydroxyalkanoates and their nanobiocomposites with cellulose nanocrystals. In: Thomas S, Shanks R, Chandrasekharakurup S (eds) Des Appl. Nanostructured Polym. Blends Nanocomposite Syst. Elsevier, Oxford, pp 261–285
Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers (Basel) 2:728–765. doi:10.3390/polym2040728
Hu W, Chen S, Yang J et al (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060. doi:10.1016/j.carbpol.2013.09.102
de Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253. doi:10.1016/j.foodres.2009.03.019
Favier V, Cavaille JY, Canova GR, Shrivastava SC (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739. doi:10.1002/pen.11821
Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b
Cao Y, Zavattieri P, Youngblood J et al (2016) The relationship between cellulose nanocrystal dispersion and strength. Constr Build Mater 119:71–79. doi:10.1016/j.conbuildmat.2016.03.077
Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi:10.1021/cr900339w
Cherian BM, Leao AL, de Souza SF et al (2011) Cellulose nanocomposites for high-performance applications. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, pp 539–587
Dhar P, Bhardwaj U, Kumar A, Katiyar V (2015) Poly (3-hydroxybutyrate)/cellulose nanocrystal films for food packaging applications: barrier and migration studies. Polym Eng Sci 55:2388–2395. doi:10.1002/pen.24127
Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. doi:10.1007/s10570-007-9145-9
Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21:545–554. doi:10.1007/s12192-010-0223-9
Cyras VP, Galego Fernández N, Vázquez A (1999) Biodegradable films from PHB-8HV copolymers and polyalcohols blends: crystallinity, dynamic mechanical analysis and tensile properties. Polym Int 48:705–712
Barham PJ, Keller A, Otun EL, Holmes PA (1984) Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci 19:2781–2794. doi:10.1007/BF01026954
Spence K, Habibi Y, Dufresne A (2011) Nanocellulose-based composites. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, pp 179–213
Oh SY, Il Yoo D, Shin Y et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391. doi:10.1016/j.carres.2005.08.007
de Teixeira EM, Pasquini D, Curvelo AAS et al (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78:422–431. doi:10.1016/j.carbpol.2009.04.034
Silvério HA, Flauzino Neto WP, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436. doi:10.1016/j.indcrop.2012.10.014
Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677. doi:10.1021/bm034519+
Azizi Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whisker, their properties and their application in nanocomposites field. Biomacromolecules 6:612–626
Gunaratne LMWK, Shanks RA, Amarasinghe G (2004) Thermal history effects on crystallisation and melting of poly(3-hydroxybutyrate). Thermochim Acta 423:127–135. doi:10.1016/j.tca.2004.05.003
Pearce R, Marchessault R (1994) Multiple melting in blends of isotactic and atactic poly(β-hydroxybutyrate). Polymer (Guildf) 35:3990–3997. doi:10.1016/0032-3861(94)90285-2
Ten E, Jiang L, Wolcott MP (2012) Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Carbohydr Polym 90:541–550. doi:10.1016/j.carbpol.2012.05.076
Simonsen J, Habibi Y (2009) Cellulose nanocrystals in polymer matrices. In: The nanoscience and technology of renewable biomaterials. Wiley, Chichester, pp 273–292
Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 91:377–384. doi:10.1016/j.carbpol.2012.08.054
Xu C, Qiu Z (2009) Nonisothermal melt crystallization and subsequent melting behavior of biodegradable poly(hydroxybutyrate)/multiwalled carbon nanotubes nanocomposites. J Polym Sci Part B Polym Phys 47:2238–2246. doi:10.1002/polb.21821
Fortunati E, Armentano I, Zhou Q et al (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605. doi:10.1016/j.carbpol.2011.09.066
Zhang J, Sato H, Noda I, Ozaki Y (2005) Conformation rearrangement and molecular dynamics of poly(3-hydroxybutyrate) during the melt-crystallization process investigated by infrared and two-dimensional infrared correlation spectroscopy. Macromolecules 38:4274–4281. doi:10.1021/ma0501343
Mottin AC, Ayres E, Eliane A et al (2016) What changes in poly(3-hydroxybutyrate) (PHB) when processed as electrospun nanofibers or thermo-compression molded film? Mater Res 19:57–66
de O Patrício PS, Pereira FV, dos Santos MC et al (2013) Increasing the elongation at break of polyhydroxybutyrate biopolymer: effect of cellulose nanowhiskers on mechanical and thermal properties. J Appl Polym Sci 127:3613–3621. doi:10.1002/app.37811
Fortunati E, Peltzer M, Armentano I et al (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948–956. doi:10.1016/j.carbpol.2012.06.025
Avérous L, Pollet E (2012) Green Nano-Biocomposites. In: Avérous L, Pollet E (eds) Environmental silicate nano-biocomposites. Springer, London, pp 1–11
Acknowledgments
The authors acknowledge the financial support of CONICET (PIP 0014 y 0527) y CNR-CONICET Nº 1010, Agencia Nacional de Promoción Científica y Tecnológica (PICT’12 1983) and Universidad Nacional de Mar del Plata.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Seoane, I.T., Cerrutti, P., Vazquez, A. et al. Polyhydroxybutyrate-Based Nanocomposites with Cellulose Nanocrystals and Bacterial Cellulose. J Polym Environ 25, 586–598 (2017). https://doi.org/10.1007/s10924-016-0838-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10924-016-0838-8