[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Generative AI in Medical Imaging: Applications, Challenges, and Ethics

  • Comment
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Medical imaging is playing an important role in diagnosis and treatment of diseases. Generative artificial intelligence (AI) have shown great potential in enhancing medical imaging tasks such as data augmentation, image synthesis, image-to-image translation, and radiology report generation. This commentary aims to provide an overview of generative AI in medical imaging, discussing applications, challenges, and ethical considerations, while highlighting future research directions in this rapidly evolving field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Not applicable.

References

  1. Shad, R., Cunningham, J. P., Ashley, E. A., Langlotz, C. P. & Hiesinger, W. Designing clinically translatable artificial intelligence systems for high-dimensional medical imaging. Nature Machine Intelligence 3, 929–935 (2021).

    Article  Google Scholar 

  2. AlAmir, M. & AlGhamdi, M. The Role of generative adversarial network in medical image analysis: An in-depth survey. ACM Computing Surveys 55, 1–36 (2022).

    Article  Google Scholar 

  3. Birhane, A., Kasirzadeh, A., Leslie, D. & Wachter, S. Science in the age of large language models. Nature Reviews Physics, 1–4 (2023).

  4. Kottlors, J. et al Feasibility of Differential Diagnosis Based on Imaging Patterns Using a Large Language Model. Radiology 308, e231167 (2023).

    Article  PubMed  Google Scholar 

  5. Yu, B. et al Ea-GANs: edge-aware generative adversarial networks for cross-modality MR image synthesis. IEEE transactions on medical imaging 38, 1750–1762 (2019).

    Article  PubMed  Google Scholar 

  6. Wang, J., Chen, Y., Wu, Y., Shi, J. & Gee, J. in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 3627–3636.

  7. Gao, C. et al Synthetic data accelerates the development of generalizable learning-based algorithms for X-ray image analysis. Nature Machine Intelligence 5, 294–308 (2023).

    Article  Google Scholar 

  8. Jung, E., Luna, M. & Park, S. H. Conditional GAN with 3D discriminator for MRI generation of Alzheimer’s disease progression. Pattern Recognition 133, 109061 (2023).

    Article  Google Scholar 

  9. Ghorbani, A., Natarajan, V., Coz, D. & Liu, Y. in Machine learning for health workshop. 155–170 (PMLR).

  10. Yang, Z. et al A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure. Nature communications 12, 7065 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou, Y., Wang, B., He, X., Cui, S. & Shao, L. DR-GAN: conditional generative adversarial network for fine-grained lesion synthesis on diabetic retinopathy images. IEEE Journal of Biomedical and Health Informatics 26, 56–66 (2020).

    Article  CAS  Google Scholar 

  12. Acosta, J. N., Falcone, G. J., Rajpurkar, P. & Topol, E. J. Multimodal biomedical AI. Nature Medicine 28, 1773–1784 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, S.-C., Pareek, A., Seyyedi, S., Banerjee, I. & Lungren, M. P. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ digital medicine 3, 136 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Adams, L. C. et al Leveraging GPT-4 for post hoc transformation of free-text radiology reports into structured reporting: a multilingual feasibility study. Radiology 307, e230725 (2023).

    Article  PubMed  Google Scholar 

  15. Li, H. et al Ethics of large language models in medicine and medical research. The Lancet Digital Health 5, e333-e335 (2023).

    Article  PubMed  Google Scholar 

  16. Wang, J. et al FedMed-GAN: Federated domain translation on unsupervised cross-modality brain image synthesis. Neurocomputing 546, 126282 (2023).

    Article  Google Scholar 

  17. Schwarz, K., Liao, Y. & Geiger, A. On the frequency bias of generative models. Advances in Neural Information Processing Systems 34, 18126–18136 (2021).

    Google Scholar 

  18. Shabani, S., Homayounfar, M., Vardhanabhuti, V., Mahani, M.-A. N. & Koohi-Moghadam, M. Self-supervised region-aware segmentation of COVID-19 CT images using 3D GAN and contrastive learning. Computers in Biology and Medicine 149, 106033 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gurney-Champion, O. J., Landry, G., Redalen, K. R. & Thorwarth, D. in Seminars in Radiation Oncology. 377–388 (Elsevier).

  20. Shneiderman, B. Responsible AI: Bridging from ethics to practice. Communications of the ACM 64, 32–35 (2021).

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

M.K. and K.T.B. conceived the idea. M.K. and K.T.B. wrote the manuscript. All authors checked and edited the final version.

Corresponding authors

Correspondence to Mohamad Koohi-Moghadam or Kyongtae Ty Bae.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koohi-Moghadam, M., Bae, K.T. Generative AI in Medical Imaging: Applications, Challenges, and Ethics. J Med Syst 47, 94 (2023). https://doi.org/10.1007/s10916-023-01987-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-023-01987-4

Keywords

Navigation