Abstract
The distribution of fiducial markers is one of the main factors affected the accuracy of optical navigation system. However, many studies have been focused on improving the fiducial registration accuracy or the target registration accuracy, but few solutions involve optimization model for the distribution of fiducial markers. In this paper, we propose an optimization model for the distribution of fiducial markers to improve the optical navigation accuracy. The strategy of optimization model is reducing the distribution from three dimensional to two dimensional to obtain the 2D optimal distribution by using optimization algorithm in terms of the marker number and the expectation equation of target registration error (TRE), and then extend the 2D optimal distribution in two dimensional to three dimensional to calculate the optimal distribution according to the distance parameter and the expectation equation of TRE. The results of the experiments show that the averaged TRE for the human phantom is approximately 1.00 mm by applying the proposed optimization model, and the averaged TRE for the abdominal phantom is 0.59 mm. The experimental results of liver simulator model and ex-vivo porcine liver model show that the proposed optimization model can be effectively applied in liver intervention.
Similar content being viewed by others
References
Doba, N., Fukuda, H., Numata, K., Hao, Y., Hara, K., Nozaki, A., Kondo, M., Chuma, M., Tanaka, K., and Takebayashi, S., A new device for fiducial registration of image-guided navigation system for liver RFA. Int J Comput Assist Radiol Surg 13:115–124, 2018.
Won, H. J., Kim, N., Kim, G. B., Seo, J. B., and Kim, H., Validation of a CT-guided intervention robot for biopsy and radiofrequency ablation: Experimental study with an abdominal phantom. Diagn Interv Radiol 23(3):233–237, 2017.
Wallach, D., Toporek, G., Weber, S., Bale, R., and Widmann, G., Comparison of freehand-navigated and aiming device-navigated targeting of liver lesions. Int J Med Robotics Comput Assist Surg 10(1):35–43, 2014.
Nicolau, S. A., Pennec, X., Soler, L., Buy, X., Gangi, A., Ayache, N., and Marescaux, J., An augmented reality system for liver thermal ablation: Design and evaluation on clinical cases. Med Image Anal 13(3):494–506, 2009.
Hong, J., Nakashima, H., Konishi, K., Ieiri, S., Tanoue, K., Nakamuta, M., and Hashizume, M., Interventional navigation for abdominal therapy based on simultaneous use of MRI and ultrasound. Med Biol Eng Comput 44(12):1127–1134, 2006.
Cleary, K., and Peters, T. M., Image-guided interventions: Technology review and clinical applications. Annu Rev Biomed Eng 12(1):119–142, 2010.
Maurer, C. R., Fitzpatrick, J. M., Wang, M. Y., Galloway, R. L., Maciunas, R. J., and Allen, G. S., Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging 16(4):447–462, 1997.
Fitzpatrick, J. M., and West, J. B., The distribution of target registration error in rigid-body, point-based registration. IEEE Trans Med Imaging 20(9):917–927, 2001.
West, J. B., Fitzpatrick, J. M., Toms, S. A., Maurer, Jr., C. R., and Maciunas, R. J., Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery 48(4):810–817, 2001.
Wang, M., and Song, Z., Improving target registration accuracy in image-guided neurosurgery by optimizing the distribution of fiducial points. Int J Med Robotics Comput Assist Surg 5(1):26–31, 2009.
Wang, M., and Song, Z., Guidelines for the placement of fiducial points in image-guided neurosurgery. Int J Med Robotics Comput Assist Surg 6(2):142–149, 2010.
Liu, H., Yu, Y., Schell, M., O'Dell, W. G., Ruo, R., and Okunieff, P., Optimal marker placement in photogrammetry patient positioning system. Med Phys 30(2):103–110, 2003.
Riboldi, M., Baroni, G., Spadea, M., Tagaste, B., Garibaldi, C., Cambria, R., Orecchia, R., and Pedotti, A., Genetic evolutionary taboo search for optimal marker placement in infrared patient setup. Phys Med Biol 52(19):5815, 2007.
Atuegwu, N. C., and Galloway, R. L., Sensitivity analysis of fiducial placement on transorbital target registration error. Int J Comput Assist Radiol Surg 2(6):397–404, 2008.
Shamir, R. R., Joskowicz, L., and Shoshan, Y., Fiducial optimization for minimal target registration error in image-guided neurosurgery. IEEE Trans Med Imaging 31(3):725–737, 2011.
Lin, Q., Yang, R., Cai, K., Guan, P., Xiao, W., and Wu, X., Strategy for accurate liver intervention by an optical tracking system. Biomed Opt Express 6(9):3287–3302, 2015.
Lin, Q., Yang, R., Cai, K., Si, X., Chen, X., and Wu, X., Real-time automatic registration in optical surgical navigation. Infrared Phys Technol 76:375–385, 2016.
Wu, H., Lin, Q., Yang, R., Zhou, Y., Zheng, L., Huang, Y., Wang, Z., Lao, Y., and Huang, J., An accurate recognition of infrared retro-reflective markers in surgical navigation. J Med Syst 43(6):153, 2019.
Dai, Z., Yang, R., Hang, F., Zhuang, J., Lin, Q., Wang, Z., and Lao, Y., Neurosurgical craniotomy localization using interactive 3D lesion mapping for image-guided neurosurgery. IEEE Access 7:10606–10616, 2019.
Chu, Q., Zhan, Y., Guo, F., Song, M., and Yang, R., Automatic 3D registration of CT-MR head and neck images with surface matching. IEEE Access 7:78274–78280, 2019.
Liu, T., Li, Y-F, Liu, H., Zhang, Z., and Liu, S., RISIR: Rapid infrared spectral imaging restoration model for industrial material detection in intelligent video systems. IEEE Transactions on Ind Inform, in press, 2019.
Dema, M., Turner, C., Sari-Sarraf, H., and Hequet, E., Machine vision system for characterizing horizontal wicking and drying using an infrared camera. IEEE Trans Ind Inform 12(2):493–502, 2016.
Liu, H., Chen, S., and Kubota, N., Intelligent video systems and analytics: A survey. IEEE Trans Ind Inform 9(3):1222–1233, 2013.
Yang, R., Wang, Z., Liu, S., and Wu, X., Design of an accurate near infrared optical tracking system in surgical navigation. J Lightwave Technol 31(2):223–231, 2013.
Lin, Q., Cai, K., Yang, R., Chen, H., Wang, Z., and Zhou, J., Development and validation of a near-infrared optical system for tracking surgical instruments. J Med Syst 40(4):107, 2016.
Lin, Q., Cai, K., Yang, R., Xiao, W., Huang, J., Zhan, Y., and Zhuang, J., Geometric calibration of markerless optical surgical navigation system. Int J Med Robotics Comput Assist Surg 15(2):e1978, 2019.
Xiao, B., Wang, K., Bi, X., Li, W., and Han, J., 2D-LBP: An enhanced local binary feature for texture image classification. IEEE Trans Circuits Syst Video Technol 29(9):2796–2808, 2018.
Tang, H., Xiao, B., Li, W., and Wang, G., Pixel convolutional neural network for multi-focus image fusion. Inf Sci 433:125–141, 2018.
Lin, Q., Yang, R., Zhang, Z., Cai, K., Wang, Z., Huang, M., Huang, J., Zhan, Y., and Zhuang, J., Robust stereo-match algorithm for infrared markers in image-guided optical tracking system. IEEE Access 6:52421–52433, 2018.
Yang, R., Cheng, S., and Chen, Y., Flexible and accurate implementation of a binocular structured light system. Opt Lasers Eng 46(5):373–379, 2008.
Yang, R., Yang, W., Chen, Y., and Wu, X., Geometric calibration of IR camera using trinocular vision. J Lightwave Technol 29(24):3797–3803, 2011.
Yang, R., and Chen, Y., Design of a 3-d infrared imaging system using structured light. IEEE Trans Instrum Meas 60(2):608–617, 2011.
Yang, R., Cheng, S., Yang, W., and Chen, Y., Robust and accurate surface measurement using structured light. IEEE Trans Instrum Meas 57(6):1275–1280, 2008.
Acknowledgements
The authors acknowledge the China Postdoctoral Science Foundation (Grant: 2018 T110880, and 2017 M620375), the National Natural Science Foundation of China (Grant: 81671788), the Guangdong Provincial Science and Technology Program (Grant: 2016A020220006, 2017B020210008, 2017B010110015, and 2017A040405054), the Fundamental Research Funds for the Central Universities (Grant: 2017ZD082), the Guangzhou Science and Technology Program (Grant: 201704020228).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on Systems-Level Quality Improvement
Rights and permissions
About this article
Cite this article
Lin, Q., Yang, R., Yang, L. et al. Optimization Model for the Distribution of Fiducial Markers in Liver Intervention. J Med Syst 44, 83 (2020). https://doi.org/10.1007/s10916-020-01548-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10916-020-01548-z