[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Optimization Model for the Distribution of Fiducial Markers in Liver Intervention

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The distribution of fiducial markers is one of the main factors affected the accuracy of optical navigation system. However, many studies have been focused on improving the fiducial registration accuracy or the target registration accuracy, but few solutions involve optimization model for the distribution of fiducial markers. In this paper, we propose an optimization model for the distribution of fiducial markers to improve the optical navigation accuracy. The strategy of optimization model is reducing the distribution from three dimensional to two dimensional to obtain the 2D optimal distribution by using optimization algorithm in terms of the marker number and the expectation equation of target registration error (TRE), and then extend the 2D optimal distribution in two dimensional to three dimensional to calculate the optimal distribution according to the distance parameter and the expectation equation of TRE. The results of the experiments show that the averaged TRE for the human phantom is approximately 1.00 mm by applying the proposed optimization model, and the averaged TRE for the abdominal phantom is 0.59 mm. The experimental results of liver simulator model and ex-vivo porcine liver model show that the proposed optimization model can be effectively applied in liver intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Doba, N., Fukuda, H., Numata, K., Hao, Y., Hara, K., Nozaki, A., Kondo, M., Chuma, M., Tanaka, K., and Takebayashi, S., A new device for fiducial registration of image-guided navigation system for liver RFA. Int J Comput Assist Radiol Surg 13:115–124, 2018.

  2. Won, H. J., Kim, N., Kim, G. B., Seo, J. B., and Kim, H., Validation of a CT-guided intervention robot for biopsy and radiofrequency ablation: Experimental study with an abdominal phantom. Diagn Interv Radiol 23(3):233–237, 2017.

    Article  Google Scholar 

  3. Wallach, D., Toporek, G., Weber, S., Bale, R., and Widmann, G., Comparison of freehand-navigated and aiming device-navigated targeting of liver lesions. Int J Med Robotics Comput Assist Surg 10(1):35–43, 2014.

  4. Nicolau, S. A., Pennec, X., Soler, L., Buy, X., Gangi, A., Ayache, N., and Marescaux, J., An augmented reality system for liver thermal ablation: Design and evaluation on clinical cases. Med Image Anal 13(3):494–506, 2009.

    Article  CAS  Google Scholar 

  5. Hong, J., Nakashima, H., Konishi, K., Ieiri, S., Tanoue, K., Nakamuta, M., and Hashizume, M., Interventional navigation for abdominal therapy based on simultaneous use of MRI and ultrasound. Med Biol Eng Comput 44(12):1127–1134, 2006.

    Article  CAS  Google Scholar 

  6. Cleary, K., and Peters, T. M., Image-guided interventions: Technology review and clinical applications. Annu Rev Biomed Eng 12(1):119–142, 2010.

    Article  CAS  Google Scholar 

  7. Maurer, C. R., Fitzpatrick, J. M., Wang, M. Y., Galloway, R. L., Maciunas, R. J., and Allen, G. S., Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging 16(4):447–462, 1997.

    Article  Google Scholar 

  8. Fitzpatrick, J. M., and West, J. B., The distribution of target registration error in rigid-body, point-based registration. IEEE Trans Med Imaging 20(9):917–927, 2001.

    Article  CAS  Google Scholar 

  9. West, J. B., Fitzpatrick, J. M., Toms, S. A., Maurer, Jr., C. R., and Maciunas, R. J., Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery 48(4):810–817, 2001.

    CAS  PubMed  Google Scholar 

  10. Wang, M., and Song, Z., Improving target registration accuracy in image-guided neurosurgery by optimizing the distribution of fiducial points. Int J Med Robotics Comput Assist Surg 5(1):26–31, 2009.

  11. Wang, M., and Song, Z., Guidelines for the placement of fiducial points in image-guided neurosurgery. Int J Med Robotics Comput Assist Surg 6(2):142–149, 2010.

  12. Liu, H., Yu, Y., Schell, M., O'Dell, W. G., Ruo, R., and Okunieff, P., Optimal marker placement in photogrammetry patient positioning system. Med Phys 30(2):103–110, 2003.

    Article  CAS  Google Scholar 

  13. Riboldi, M., Baroni, G., Spadea, M., Tagaste, B., Garibaldi, C., Cambria, R., Orecchia, R., and Pedotti, A., Genetic evolutionary taboo search for optimal marker placement in infrared patient setup. Phys Med Biol 52(19):5815, 2007.

    Article  CAS  Google Scholar 

  14. Atuegwu, N. C., and Galloway, R. L., Sensitivity analysis of fiducial placement on transorbital target registration error. Int J Comput Assist Radiol Surg 2(6):397–404, 2008.

    Article  Google Scholar 

  15. Shamir, R. R., Joskowicz, L., and Shoshan, Y., Fiducial optimization for minimal target registration error in image-guided neurosurgery. IEEE Trans Med Imaging 31(3):725–737, 2011.

    Article  Google Scholar 

  16. Lin, Q., Yang, R., Cai, K., Guan, P., Xiao, W., and Wu, X., Strategy for accurate liver intervention by an optical tracking system. Biomed Opt Express 6(9):3287–3302, 2015.

  17. Lin, Q., Yang, R., Cai, K., Si, X., Chen, X., and Wu, X., Real-time automatic registration in optical surgical navigation. Infrared Phys Technol 76:375–385, 2016.

    Article  Google Scholar 

  18. Wu, H., Lin, Q., Yang, R., Zhou, Y., Zheng, L., Huang, Y., Wang, Z., Lao, Y., and Huang, J., An accurate recognition of infrared retro-reflective markers in surgical navigation. J Med Syst 43(6):153, 2019.

  19. Dai, Z., Yang, R., Hang, F., Zhuang, J., Lin, Q., Wang, Z., and Lao, Y., Neurosurgical craniotomy localization using interactive 3D lesion mapping for image-guided neurosurgery. IEEE Access 7:10606–10616, 2019.

    Article  Google Scholar 

  20. Chu, Q., Zhan, Y., Guo, F., Song, M., and Yang, R., Automatic 3D registration of CT-MR head and neck images with surface matching. IEEE Access 7:78274–78280, 2019.

    Article  Google Scholar 

  21. Liu, T., Li, Y-F, Liu, H., Zhang, Z., and Liu, S., RISIR: Rapid infrared spectral imaging restoration model for industrial material detection in intelligent video systems. IEEE Transactions on Ind Inform, in press, 2019.

  22. Dema, M., Turner, C., Sari-Sarraf, H., and Hequet, E., Machine vision system for characterizing horizontal wicking and drying using an infrared camera. IEEE Trans Ind Inform 12(2):493–502, 2016.

    Article  Google Scholar 

  23. Liu, H., Chen, S., and Kubota, N., Intelligent video systems and analytics: A survey. IEEE Trans Ind Inform 9(3):1222–1233, 2013.

    Article  Google Scholar 

  24. Yang, R., Wang, Z., Liu, S., and Wu, X., Design of an accurate near infrared optical tracking system in surgical navigation. J Lightwave Technol 31(2):223–231, 2013.

    Article  Google Scholar 

  25. Lin, Q., Cai, K., Yang, R., Chen, H., Wang, Z., and Zhou, J., Development and validation of a near-infrared optical system for tracking surgical instruments. J Med Syst 40(4):107, 2016.

    Article  Google Scholar 

  26. Lin, Q., Cai, K., Yang, R., Xiao, W., Huang, J., Zhan, Y., and Zhuang, J., Geometric calibration of markerless optical surgical navigation system. Int J Med Robotics Comput Assist Surg 15(2):e1978, 2019.

  27. Xiao, B., Wang, K., Bi, X., Li, W., and Han, J., 2D-LBP: An enhanced local binary feature for texture image classification. IEEE Trans Circuits Syst Video Technol 29(9):2796–2808, 2018.

    Article  Google Scholar 

  28. Tang, H., Xiao, B., Li, W., and Wang, G., Pixel convolutional neural network for multi-focus image fusion. Inf Sci 433:125–141, 2018.

    Article  Google Scholar 

  29. Lin, Q., Yang, R., Zhang, Z., Cai, K., Wang, Z., Huang, M., Huang, J., Zhan, Y., and Zhuang, J., Robust stereo-match algorithm for infrared markers in image-guided optical tracking system. IEEE Access 6:52421–52433, 2018.

    Article  Google Scholar 

  30. Yang, R., Cheng, S., and Chen, Y., Flexible and accurate implementation of a binocular structured light system. Opt Lasers Eng 46(5):373–379, 2008.

    Article  Google Scholar 

  31. Yang, R., Yang, W., Chen, Y., and Wu, X., Geometric calibration of IR camera using trinocular vision. J Lightwave Technol 29(24):3797–3803, 2011.

    Article  Google Scholar 

  32. Yang, R., and Chen, Y., Design of a 3-d infrared imaging system using structured light. IEEE Trans Instrum Meas 60(2):608–617, 2011.

    Article  Google Scholar 

  33. Yang, R., Cheng, S., Yang, W., and Chen, Y., Robust and accurate surface measurement using structured light. IEEE Trans Instrum Meas 57(6):1275–1280, 2008.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the China Postdoctoral Science Foundation (Grant: 2018 T110880, and 2017 M620375), the National Natural Science Foundation of China (Grant: 81671788), the Guangdong Provincial Science and Technology Program (Grant: 2016A020220006, 2017B020210008, 2017B010110015, and 2017A040405054), the Fundamental Research Funds for the Central Universities (Grant: 2017ZD082), the Guangzhou Science and Technology Program (Grant: 201704020228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Cai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Q., Yang, R., Yang, L. et al. Optimization Model for the Distribution of Fiducial Markers in Liver Intervention. J Med Syst 44, 83 (2020). https://doi.org/10.1007/s10916-020-01548-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-020-01548-z

Keywords

Navigation