Abstract
In this paper, we propose a new Internet of Things (IoT) based predictive modelling by using fuzzy cluster based augmentation and classification for predicting the lung cancer disease through continuous monitoring and also to improve the healthcare by providing medical instructions. Here, the fuzzy clustering method is used and which is based on transition region extraction for effective image segmentation. Moreover, Fuzzy C-Means Clustering algorithm is used to categorize the transitional region features from the feature of lung cancer image. In this work, Otsu thresholding method is used for extracting the transition region from lung cancer image. Moreover, the right edge image and the morphological thinning operation are used for enhancing the performance of segmentation. In addition, the morphological cleaning and the image region filling operations are performed over an edge lung cancer image for getting the object regions. In addition, we also propose a new incremental classification algorithm which combines the existing Association Rule Mining (ARM), the standard Decision Tree (DT) with temporal features and the CNN. The experiments have been conducted by using the standard images that are collected from database and the current health data which are collected from patient through IoT devices. The results proved that the performance of the proposed prediction model which is able to achieve the better accuracy when it is compared with other existing prediction model.
Similar content being viewed by others
References
World health organization cancer fact sheets. <http://www.who.int/mediacentre/factsheets/fs297/en/index.html>.
Siegel, R., Miller, K., and Jemal, A., Cancer statistics, 2016. CA-Cancer J. Clin. 66:7–30, 2016.
Aerts, H., Velazquez, E., Leijenaar, R., Parmar, C., Grossmann, P., Carvalho, S. et al., Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5:4006, 2014.
Kubota, T., Jerebko, A., Dewan, M., Salganicoff, M., and Krishnan, A., Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models. Med. Image Anal. 15:133–154, 2011.
Sharma, N., and Aggarwal, L., Automated medical image segmentation techniques. J. Med. Phys. 35:3–14, 2010.
Farag, A. A., El Munim, H. E. A., Graham, J. H., and Farag, A. A., A novel approach for lung nodules segmentation in chest ct using level sets. IEEE Trans. Image Process. 22:5202–5213, 2013.
Lassen, B., Jacobs, C., Kuhnigk, J., van Ginneken, B., and van Rikxoort, E., Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans. Phys. Med. Biol. 60:1307, 2015.
Fukushima, K., Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4):193–202, 1980.
Jebadurai, J., and Dinesh Peter, J., Super-resolution of retinal images using multi-kernel SVR for IoT healthcare applications. Futur. Gener. Comput. Syst., Elsevier 83:338–346, 2018.
Salunke, P., and Nerkar, R., IoT driven healthcare system for remote monitoring of patients. J. Modern Trend Sci. Technol. 3(06):100–103, 2017.
Gope, P., and Hwang, T., BSN-care: A secure IoT-based modern healthcare system using body sensor network. IEEE Sens. J. 16(5):1368–1376, 2016.
Kannan, S. R., Sathya, A., Ramathilagam, S., and Devi, R., Novel segmentation algorithm in segmenting medical images. J. Syst. Soft. 83(12):2487–2495, 2010.
Nan, B., Che, L., Chui, K., Chang, S., and Ong, S. H., Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput. Biol. Med. 41(1):1–10, 2011.
Bai, P. R., Yi, Q., Lei, L., Sheng, L., Jing, H. T., Mao, L., and Cao, Y., A novel region-based level set method initialized with mean shift clustering for automated medical image segmentation. Comput. Biol. Med. 43(11):1827–1832, 2013.
Manikandan, S., Ramar, K., Willjuice Iruthayarajan, M., and Srinivasagan, K. G., Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm. Measurement 47:558–568, 2014.
Torbati, N., Ayatollahi, A., and Kermani, A., An efficient neural network based method for medical image segmentation. Comput. Biol. Med. 44:76–87, 2014.
Li, Y., Jiao, L., Shang, R., and Stolkin, R., Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Inf. Sci. 294:408–422, 2015.
Zhang, X., Li, X. f., and Feng, Y., A medical image segmentation algorithm based on bi-directional region growing. Optik Int. J. Light Electron Opt. 126(20):2398–2404, 2015.
Mahapatra, D., Combining multiple expert annotations using semi-supervised learning and graph cuts for medical image segmentation. Comput. Vis. Image Underst. 151:114–123, 2016.
De, S., Bhattacharyya, S., and Dutta, P., Automatic magnetic resonance image segmentation by fuzzy intercluster hostility index based genetic algorithm: An application. Appl. Soft Comput. 47:669–683, 2016.
Biswas, S., Ghoshal, D., and Hazra, R., A new algorithm of image segmentation using curve fitting based higher order polynomial smoothing. Optik 127(20):8916–8925, 2016.
Ghosh, P., Mitchell, M., Tanyi, J. A., and Hung, A. Y., Incorporating priors for medical image segmentation using a genetic algorithm. Neurocomputing 195(26):181–194, 2016.
Kalshetti, P., Bundele, M., Rahangdale, P., Jangra, D., Chattopadhyay, C., Harit, G., and Elhence, A., An interactive medical image segmentation framework using iterative refinement. Comput. Biol. Med. 83:22–33, 2017.
Zhou, S., Wang, J., Zhang, M., Cai, Q., and Gong, Y., Correntropy-based level set method for medical image segmentation and bias correction. Neurocomputing 234(19):216–229, 2017.
Chen, Y.-T., A novel approach to segmentation and measurement of medical image using level set methods. Magn. Reson. Imaging 39:175–193, 2017.
Yang, S.-C., A robust approach for subject segmentation of medical images: Illustration with mammograms and breast magnetic resonance images. Comput. Electr. Eng. 62:151–165, 2017.
Khanfir Kallel, I., Almouahed, S., Solaiman, B., and Bossé, É., An iterative possibilistic knowledge diffusion approach for blind medical image segmentation. Pattern Recogn. 78:182–197, 2018.
Zheng, Q., Li, H., Fan, B., Wu, S., and Xu, J., Integrating support vector machine and graph cuts for medical image segmentation. J. Vis. Commun. Image Represent. 55:157–165, 2018.
Liu, C., Ng, M. K.-P., and Zeng, T., Weighted variational model for selective image segmentation with application to medical images. Pattern Recogn. 76:367–379, 2018.
Drozdzal, M., Chartrand, G., Vorontsov, E., Shakeri, M., Di Jorio, L., Adrian, A. T., Yoshu, R., Pal, B. C., and Kadoury, S., Learning normalized inputs for iterative estimation in medical image segmentation. Med. Image Anal. 44:1–13, 2018.
Zhao, W., Xu, X., Zhu, Y., and Xu, F., Active contour model based on local and global Gaussian fitting energy for medical image segmentation. Optik 158:1160–1169, 2018.
Vardhana, M., Arunkumar, N., Lasrado, S., Abdulhay, E., and Ramirez-Gonzalez, G., Convolutional neural network for bio-medical image segmentation with hardware acceleration. Cogn. Syst. Res. 50:10–14, 2018.
Miao, J., Huang, T.-Z., Zhou, X., Wang, Y., and Liu, J., Image segmentation based on an active contour model of partial image restoration with local cosine fitting energy. Inf. Sci. 447:52–71, 2018.
Singh, C., and Bala, A., A DCT-based local and non-local fuzzy C-means algorithm for segmentation of brain magnetic resonance images. Appl. Soft Comput. 68:447–457, 2018.
Rangaswamy, C., Raju, G. T., and Seshikala, G., Novel approach for lung image segmentation through enhanced fuzzy C-means algorithm. Int. J. Pure Appl. Math. 117(21):455–465, 2017.
Parida, P., and Bhoi, N., Transition region based single and multiple object segmentation of gray scale images. Eng Sci. Technol. Int. J. 19(3):1206–1215, 2016.
Cai, W., Chen, S., and Zhang, D., Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn. 40(3):825–838, 2007.
Otsu, N., A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. 9(1):62–66, 1979.
Sun, S., Bauer, C., and Beichel, R., Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach. IEEE Trans. Med Imaging 31(2):449–460, 2012.
Taher, F., and Sammouda, R., Lung cancer detection by using artificial neural network and fuzzy clustering methods. IEEE GCC Conf. Exhib. 10:295–298, 2011.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors have no conflict of interest.
(In Case Animals Were Involved) Ethical Approval
Animals were not involved.
(And/or in Case Humans Were Involved) Ethical Approval
This article does not contain any studies with human participants performed by any of the authors.
Ethical Approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
This article is part of the Topical Collection on Image & Signal Processing
Rights and permissions
About this article
Cite this article
Palani, D., Venkatalakshmi, K. An IoT Based Predictive Modelling for Predicting Lung Cancer Using Fuzzy Cluster Based Segmentation and Classification. J Med Syst 43, 21 (2019). https://doi.org/10.1007/s10916-018-1139-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10916-018-1139-7