[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Morphological and Volumetric Assessment of Cerebral Ventricular System with 3D Slicer Software

  • Education & Training
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

We present a technological process based on the 3D Slicer software for the three-dimensional study of the brain’s ventricular system with teaching purposes. It values the morphology of this complex brain structure, as a whole and in any spatial position, being able to compare it with pathological studies, where its anatomy visibly changes. 3D Slicer was also used to obtain volumetric measurements in order to provide a more comprehensive and detail representation of the ventricular system. We assess the potential this software has for processing high resolution images, taken from Magnetic Resonance and generate the three-dimensional reconstruction of ventricular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ratib, O., Rosset, A., and Heuberger, J., Open source software and social networks: disruptive alternatives for medical imaging. European Journal of Radiology 78(2):259–265, 2011.

    Article  PubMed  Google Scholar 

  2. Velazquez, E. R., Parmar, C., Jermoumi, M., Mak, R. H., van Baardwijk, A., Fennessy, F. M., Lewis, J. H., De Ruysscher, D., Kikinis, R., Lambin, P., and Aerts, H. J., Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Science Reports 18(3):3529, 2013.

    Google Scholar 

  3. Oyama, R., Jakab, M., Kikuchi, A., Sugiyama, T., Kikinis, R., and Pujol, S., Towards improved ultrasound-based analysis and 3D visualization of the fetal brain using the 3D Slicer. Ultrasound in Obstetrics and Gynecology 42(5):609–610, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Revannasiddaiah, S, Susheela, S. P., Madhusudhan, N., Mallarajapatna, G. J., Three-dimensional volumetric rendition of cannon ball pulmonary metastases by the use of 3D Slicer, an open source free software package. BMJ Case Reports, 2013.

  5. Gao, Y., Tannenbaum, A., Kikinis, R., Medical computer vision. Recognition techniques and applications in medical imaging. In: Menze, B., Langs, G., Tu Z., Criminisi A. (Eds.), Heidelberg: Springer Berlin Heidelberg, Berlin;195–203, 2011.

  6. Yushkevich, P. A., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., and Gerig, G., User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31:1116–1128, 2006.

    Article  PubMed  Google Scholar 

  7. Rosset, A., Spadola, L., and Ratib, O., OsiriX: an open-source software for navigating in multidimensional DICOM images. Journal of Digital Imaging 17:205–216, 2009.

    Article  Google Scholar 

  8. Kikinis, R., and Pieper, S. (2011). 3D Slicer as a tool for interactive brain tumor segmentation. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (pp. 6982–6984). IEEE.

  9. Lee, J. H., Lee, H. K., Kim, J. K., Kim, H. J., Park, J. K., and Choi, C. G., CSF flow quantification of the cerebral aqueduct in normal volunteers using phase contrast cine MR imaging. Korean Journal of Radiology 5(2):81–86, 2004.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moon, T. K., The expectation-maximization algorithm. IEEE Signal Processing Magazine 13(6):47–60, 1996.

    Article  Google Scholar 

  11. Zhang, Y., Brady, M., and Smith, S., Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging 20(1):45–57, 2001.

    Article  CAS  PubMed  Google Scholar 

  12. Arenson, R. K., Andriole, K. P., Avrin, D. E., and Gould, R. G., Computers in imaging and health care: now and in the future. Journal of Digital Imaging 13(4):145–156, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gunderman, R. B., and Wilson, P. K., Viewpoint: exploring the human interior: the roles of cadaver dissection and radiologic imaging in teaching anatomy. Academic Medicine 80(8):745–749, 2005.

    Article  PubMed  Google Scholar 

  14. Mahmoudi, S. E., Akhondi-Asl, A., Rahmani, R., Faghih-Roohi, S., Taimouri, V., Sbouir, A., and Sotanian-Zadeh, H., Web-based Interactive 2D/3D medical image processing visualization software. Computer Methods and Programs in Biomedicine 98(2):172–182, 2010.

    Article  PubMed  Google Scholar 

  15. Juanes, J. A. Ruisoto, P., Velasco, M. A., Gómez, J. J., Advance technology for enhanced study of the brain from neuroimaging. In: Gómez Chova, L., Candel Torres, I., and López Martínez, A. (Eds.), Proceedings of the 5th International Technology, Education and Development Conference (INTED), pp: 5073–5082. 4th-6th March 2013, Valencia, Spain, 2013.

  16. Kim, G., Jung, H. J., Lee, H. J., Lee, J. S., Koo, S., and Chang, S. H., Accuracy and reliability of length measurements on three-dimensional computed tomography using open-source OsiriX software. Journal of Digital Imaging 25:486–491, 2012. doi:10.1007/s10278-012-9458-6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ruisoto, P., Juanes, J. A., Contador, I., Mayoral, P., and Prats, A., Experimental evidence for improved neuroimaging interpretation using three-dimensional graphic models. Anatomical Sciences Education 5(3):132–137, 2012. doi:10.1002/ase.1275.

    Article  PubMed  Google Scholar 

  18. Tatar, I., OsiriX: is it really a suitable software for 3D visualization of neuroanatomical structures acquired from DICOM images? Neuroanatomy 7:20–21, 2008.

    Google Scholar 

  19. Li, Y., Chen, X., and Xu, B., The efficacy of neuroendoscopic treatment for middle cranial fossa arachnoid cysts assessed by MRI 3D segmentation and modeling. Childs Nervous System 30(6):1037–1044, 2014.

    Article  Google Scholar 

  20. Seow Hiong, G., Open source and commercial software. An in-depth analysis of the issues. Business Software Alliance. 1–32, 2005.

  21. Sierra-Martínez, E., Cienfuegos-Monroy, R., and Fernández-Sobrino, G., OsiriX, visor DICOM útil para procesar imágenes tomográficas de fracturas faciales. Cirugia y Cirujanos 77:95–99, 2009.

    PubMed  Google Scholar 

  22. Valeri, G., Mazza, F. A., Maggi, S., Aramini, D., La Riccia, L., Mazzoni, G., and Giovagnoni, A., Open source software in a practical approach for post processing of radiologic images. Radiologia Medica 120(3):309–323, 2015.

    Article  PubMed  Google Scholar 

  23. Nagy, P., Open source in imaging informatics. Journal of Digital Imaging 20:1–10, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stalling, D., Westerhoff, M., Hege, H-C., Amira: A highly interactive system for visual data analysis. 1–18. Retrieved from http://www.zib.de/visual-publications/sources/src-2005/amira-overview.pdf 19th November 2012, 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Gonzalo Domínguez.

Additional information

This article is part of the Topical Collection on Education & Training

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalo Domínguez, M., Hernández, C., Ruisoto, P. et al. Morphological and Volumetric Assessment of Cerebral Ventricular System with 3D Slicer Software. J Med Syst 40, 154 (2016). https://doi.org/10.1007/s10916-016-0510-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0510-9

Keywords

Navigation