[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Heart Motion Uncertainty Compensation Prediction Method for Robot Assisted Beating Heart Surgery – Master–slave Kalman Filters Approach

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Robot Assisted Coronary Artery Bypass Graft (CABG) allows the heart keep beating in the surgery by actively eliminating the relative motion between point of interest (POI) on the heart surface and surgical tool. The inherited nonlinear and diverse nature of beating heart motion gives a huge obstacle for the robot to meet the demanding tracking control requirements. In this paper, we novelty propose a Master–slave Kalman Filter based on beating heart motion Nonlinear Adaptive Prediction (NAP) algorithm. In the study, we describe the beating heart motion as the combination of nonlinearity relating mathematics part and uncertainty relating non-mathematics part. Specifically, first, we model the nonlinearity of the heart motion via quadratic modulated sinusoids and estimate it by a Master Kalman Filter. Second, we involve the uncertainty heart motion by adaptively change the covariance of the process noise through the slave Kalman Filter. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The results indicate that the new approach reduces prediction errors by at least 30 μm. Moreover, the new approach performs well in robustness test, in which two kinds of arrhythmia datasets from MIT-BIH arrhythmia database are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig, 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.F. Newman, J.L. Kirchner, B. Phillips-Bute, V. Gaver, H. Grocott, R.H. Jones, D.B. Mark, J.G. Reves, J.A. Blumenthal, Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery, 2001.

  2. M. Lemma, A. Mangini, A. Redaelli, F. Acocella, Do cardiac stabilizers really stabilize? Experimental quantitative analysis of mechanical stabilization, 2005.

  3. S.E.S. A. L. Trejos, F. Sassani,S. Lichtenstein, On the FeasibilityofaMoving Support for, 1999.

  4. Bebek, M. C. C. O., Intelligent Control Algorithms for Robotic-Assisted Beating Heart Surgery. IEEE Transactions on Robotics 23:13, 2007.

    Article  Google Scholar 

  5. S.G. Yuen, S.B. Kesner, N.V. Vasilyev, P.J.D. Nido, R.D. Howe, 3D Ultrasound-Guided Motion Compensation System for Beating Heart Mitral Valve Repair, 2008.

  6. O. Bebek, M.C. Cavusoglu, Model based control algorithms for robotic assisted beating heart surgery, 2006.

  7. Bachta, W., Renaud, P., Cuvillon, L., Laroche, E., Forgione, A., and Gangloff, J., Motion prediction for computer-assisted beating heart surgery. IEEE transactions on bio-medical engineering 56:2551–2563, 2009.

    Article  Google Scholar 

  8. Ginhoux, R., Gangloff, J., Demathelin, M., Soler, L., Sanchez, M. M. A., and Marescaux, J., Active filtering of physiological motion in robotized surgery using predictive control. IEEE Transactions on Robotics 21:67, 2005.

    Article  Google Scholar 

  9. Ortmaier, T., Groger, M., Boehm, D. H., Falk, V., and Hirzinger, G., Motion estimation in beating heart surgery. Biomedical Engineering, IEEE Transactions on 52:1729–1740, 2005.

    Article  Google Scholar 

  10. A. Thakral, J. Wallace, D. Tomlin, N. Seth, N.V. Thakor, Surgical Motion Adaptive Robotic Technology (S.M.A.R.T): Taking the Motion out of Physiological Motion, in: Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer-Verlag, 2001, pp. 317–325.

  11. T.J. Ortmaier, Motion Compensation in in Minimally Invasive Robotic Surgery, VDI-Verlag, 2003.

  12. T.J.B. Franke, O.; Cavusoglu, Prediction of heartbeat motion with a generalized adaptive filter, in: Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on IEEE, Pasadena, CA 2008, pp. 5.

  13. T.J.B. Franke, O.; Cavusoglu, M.C.,, Improved prediction of heart motion using an adaptive filter for robot assisted beating heart surgery, in: Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on IEEE, San Diego, CA 2007, pp. 509–515.

  14. Yuen, S. G., Perrin, D. P., Vasilyev, N. V., Nido, P. J. D., and Howe, R. D., Force tracking with feed-forward motion estimation for beating heart surgery. Trans. Rob 26:888–896, 2010.

    Article  Google Scholar 

  15. Saritas, I., Prediction of Breast Cancer Using Artificial Neural Networks. J Med Syst 36:2901–2907, 2012.

    Article  Google Scholar 

  16. Fan Liang, Y. Y., Haizhong Wang and Xiaofeng Meng, Heart Motion Prediction in Robotic-Assisted Beating Heart Surgery: A Nonlinear Fast Adaptive Approach, Int J Adv Robot Syst, 10, 2013.

    Google Scholar 

  17. X.M. Fan Liang, A Quadratic Nonlinear Prediction-Based Heart Motion Model Following Control Algorithm in Robotic-Assisted Beating Heart Surgery, Int J Adv Robot Syst, 10 (2013).

  18. Liang, F., Yu, Y., and Meng, X., Multivariate vector autoregressive prognosis-based model following control method for robot-assisted beating heart surgery. Advanced Robotics 27:1259–1271, 2013.

    Article  Google Scholar 

  19. X.M.a.Y.Y. Fan Liang, Multivariate Autoregressive Model Based Heart Motion Prediction Approach for Beating Heart Surgery, Int J Adv Robot Syst, 10 (2013).

  20. Koo, H., Lee, Y.-J., Gi, S., Khang, S., Lee, J., Lee, J.-H., Lim, M.-G., Park, H.-J., and Lee, J.-W., The Effect of Textile-Based Inductive Coil Sensor Positions for Heart Rate Monitoring. J Med Syst 38:1–12, 2014.

    Article  Google Scholar 

  21. D.S. Juntong Qi, Chong Wu, Jianda Han, Tianran Wang, KF-based Adaptive UKF Algorithm and its Application for Rotorcraft UAV Actuator Failure Estimation, Int J Adv Robot Syst, 9 (2012).

  22. Stefanovska, A., Physics of the human cardiovascular system. Contemporary Physics 40:31–55, 1999.

    Article  Google Scholar 

  23. Saul, J., Beat-To-Beat Variations of Heart Rate Reflect Modulation of Cardiac Autonomic Outflow. Physiology 5:32–37, 1990.

    Google Scholar 

  24. Ivanov, P., Nunes Amaral, L. A., Goldberger, A. L., and Stanley, H. E., Stochastic feedback and the regulation of biological rhythms. Europhysics letters 43:363–368, 1998.

    Article  Google Scholar 

  25. Kiyono, K., Struzik, Z. R., Aoyagi, N., Togo, F., and Yamamoto, Y., Phase transition in a healthy human heart rate. Physical review letters 95:058101, 2005.

    Article  Google Scholar 

  26. Bahraminasab, A., Kenwright, D., Stefanovska, A., Ghasemi, F., and McClintock, P. V., Phase coupling in the cardiorespiratory interaction. IET systems biology 2:48–54, 2008.

    Article  Google Scholar 

  27. S. Hales, Statistical Essays II, Hamastatisticks, Innings Manby London, (1773).

  28. Urbancic-Rovan, V., Meglic, B., Stefanovska, A., Bernjak, A., Azman-Juvan, K., and Kocijancic, A., Incipient cardiovascular autonomic imbalance revealed by wavelet analysis of heart rate variability in Type 2 diabetic patients. Diabetic medicine : a journal of the British Diabetic Association 24:18–26, 2007.

    Article  Google Scholar 

  29. Kvandal, P., Landsverk, S. A., Bernjak, A., Stefanovska, A., Kvernmo, H. D., and Kirkeboen, K. A., Low-frequency oscillations of the laser Doppler perfusion signal in human skin. Microvascular research 72:120–127, 2006.

    Article  Google Scholar 

  30. Stefanovska, A., Bracic, M., and Kvernmo, H. D., Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE transactions on bio-medical engineering 46:1230–1239, 1999.

    Article  Google Scholar 

  31. Eckberg, D. L., The human respiratory gate. The Journal of Physiology 548:339–352, 2003.

    Article  Google Scholar 

  32. Luchinsky, D. G., Millonas, M. M., Smelyanskiy, V. N., Pershakova, A., Stefanovska, A., and McClintock, P. V., Nonlinear statistical modeling and model discovery for cardiorespiratory data, Physical review. E, Statistical, nonlinear, and soft matter physics 72:021905, 2005.

    Article  Google Scholar 

  33. Coumel, P., Hermida, J. S., Wennerblom, B., Leenhardt, A., Maison-Blanche, P., and Cauchemez, B., Heart rate variability in left ventricular hypertrophy and heart failure, and the effects of beta-blockade. A non-spectral analysis of heart rate variability in the frequency domain and in the time domain. European heart journal 12:412–422, 1991.

    Google Scholar 

  34. Shiogai, Y., Stefanovska, A., and McClintock, P., Nonlinear dynamics of cardiovascular ageing. Phys Rep 488:51–110, 2010.

    Article  Google Scholar 

  35. Ratciiffe, M. B., Gupta, K. B., Streicher, J. T., Savage, E. B., Bogen, D. K., and Edmunds, L. H., Jr., Use of sonomicrometry and multidimensional scaling to determine the three-dimensional coordinates of multiple cardiac locations: feasibility and initial implementation. Biomedical Engineering, IEEE Transactions on 42:587–598, 1995.

    Article  Google Scholar 

  36. Tuna, E. E., Franke, T. J., Bebek, O., Shiose, A., Fukamachi, K., and Cavusoglu, M. C., Heart Motion Prediction Based on Adaptive Estimation Algorithms for Robotic-Assisted Beating Heart Surgery. Robotics, IEEE Transactions on 29:261–276, 2013.

    Article  Google Scholar 

  37. Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., and Stanley, H. E., PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 101:e215–e220, 2000.

    Article  Google Scholar 

Download references

Acknowledgement

In this paper, the research is supported in part by National Natural Science Foundation of China (Project No. 61178048, Project No. 61178081), National Social Science Fund (Project No. BFA110049). We would like to Dr. Cavosoglu in Case Western Reserve University, Cleveland U.S. for the help and advice in the research related in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Liang.

Additional information

This article is part of the Topical collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, F., Yu, Y., Cui, S. et al. Heart Motion Uncertainty Compensation Prediction Method for Robot Assisted Beating Heart Surgery – Master–slave Kalman Filters Approach. J Med Syst 38, 52 (2014). https://doi.org/10.1007/s10916-014-0052-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-014-0052-y

Keywords