[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Detection of Breast Abnormality from Thermograms Using Curvelet Transform Based Feature Extraction

  • Research Article
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Breast cancer is one of the leading causes for high mortality rates among young women, in the developing countries. Currently mammography is used as the gold standard for screening breast cancer. Due to its inherent disadvantages, alternative techniques are being considered for this purpose. Breast thermography is one such imaging modality, which represents the temperature variations of breast in the form of intensity variations on an image. In the last decade, several studies have been made to evaluate the potential of breast thermograms in detecting abnormal breast conditions, from an image processing view point. This paper proposes a curvelet transform based feature extraction method for automatic detection of abnormality in breast thermograms. Statistical and texture features are extracted from thermograms in the curvelet domain, to feed a support vector machine for automatic classification. The classifier detects abnormal thermograms with an accuracy of 90.91 %. The results of the study indicate that texture features have better potential to detect abnormality in breast thermograms, when extracted in the multiresolution curvelet domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pal, N. R., Bhowmick, B., Patel, S. K., Pal, S., and Das, J., A multistage neural network aided system for detection of microcalcifications in digitized mammograms. Neurocomputing 71:2625–2634, 2008.

    Article  Google Scholar 

  2. Sree, S. V., Ng, E. Y.-K., Acharya, R. U., and Faust, O., Breast imaging: a survey. World Journal of Clinical Oncology 2(4):171–178, 2011.

    Article  Google Scholar 

  3. Keyserlingk, J. R., Ahlgren, P. D., Yu, E., and Belliveau, B., Infrared imaging of breast: initial reappraisal using high-resolution digital technology in 100 successive cases of stage I and II breast cancer. The Breast Journal 4:241–251, 1998.

    Article  Google Scholar 

  4. Ng, E. Y. K., and Ung, L. N., Statistical analysis of healthy and malignant breast thermography. Journal of Medical Engineering and Technology 25:253–263, 2001.

    Article  Google Scholar 

  5. Head, J. F., Wang, F., Lipari, C. A., and Elliott, R. L., The important role of infrared imaging in breast cancer. IEEE Engineering in Medicine and Biology Magazine 19:52–57, 2000.

    Article  Google Scholar 

  6. Lahiri, B. B., Bagavathiappan, S., Jayakumar, T., and Phillip, J., Medical applications of infrared thermography: a review. Infrared Physics and Technology 55:221–235, 2012.

    Article  Google Scholar 

  7. Kontos, M., and Fentiman, W. R., Digital infrared thermal imaging (DITI) of breast lesions: sensitivity and specificity of detection of primary breast cancers. Clinical Radiology 66(6):536–539, 2011.

    Article  Google Scholar 

  8. Wishart, G. C., Campisi, M., Boswell, M., Chapman, D., Shackleton, V., Iddles, S., Hallett, A., and Britton, P. D., The accuracy of digital infrared imaging for breast cancer detection in women undergoing breast biopsy. European Journal of Surgical Oncology 36:535–540, 2010.

    Article  Google Scholar 

  9. Ng, E. Y. K., A review of thermography as promising non-invasive detection modality for breast tumor. International Journal of Thermal Sciences 48:849–859, 2009.

    Article  Google Scholar 

  10. GhayoumiZadeh, H., AbaspurKazerouni, I., and Haddadni, J., Distinguish breast cancer based on thermal features in infrared images. Canadian Journal on Image Processing and Computer Vision. 2(6):4–58, 2011.

    Google Scholar 

  11. Yang H.-Q., Xie S.-S., Lin Q.-Y., Ye Z., Chen S.-Q., Li H. (2007). A new infrared thermal imaging and its preliminary investigation of breast disease. Proc. of IEEE/ICMEInl. Conf. on Complex Medical Engineering, 23–27 May, Beijing, China. 1071–1074.

  12. Borchartt, T. B., Conci, A., Lima, R. C. F., Resmini, R., and Sanchez, A., Breast thermography from an image processing viewpoint: A survey. Signal Processing 93:2785–2803, 2013.

    Article  Google Scholar 

  13. Jakubowska, T., Wiecek, B., Wysocki, M., Drews-Peszynski, C., Strzelecki, M., Classification of breast thermal images using artificial neural networks. Proc. of 26th Annual Inl. Conf. of IEEE Engineering in Medicine and Biology Society, 1 Sept.–5 Sept, San Francisco, CA, USA. pp. 1155–1158, 2004.

  14. Francis, V. S., and Sasikala, M., Automatic detection of abnormal breast thermograms using asymmetry analysis of texture features. Journal of Medical Engineering & Technology 37(1):17–21, 2013.

    Article  Google Scholar 

  15. Jen-Hong, T. E., Ng, Y. K., RajendraAcharya, U., and Chee, C., Study of normal ocular thermogram using textural parameters. Infrared Physics & Technology 53:120–126, 2010.

    Article  Google Scholar 

  16. Acharya, U. R., Ng, E. Y., Tan, J. H., and Sree, S. V., Thermography based breast cancer detection using texture features and support vector machine. Journal of Medical Systems 36:1503–1510, 2010.

    Article  Google Scholar 

  17. OkyDwiNurhayati, Thomas Sri Widodo, AdhiSusanto, MaesadjiTjokronagoro., First order statistical features for breast cancer detection using thermal images. World Acad Sci Eng Technol. 46:382–384, 2010.

  18. PragatiKapoor, S. V. A. V., and Prasad, S. P., Image segmentation and asymmetry analysis of breast thermograms for tumor detection. International Journal of Computer Applications. 50(9):40–45, 2012.

    Article  Google Scholar 

  19. Wiecek, B., Wiecek, M., Strakowski, R., Jakubowska, T., Ng., E. Y. K., Wavelet-based thermal image classification for breast screening and other medical applications, chp. 12. In: Ng, E. Y. K., Acharya, U. R., and Suri, J. S., (Eds.), Performance evaluation techniques in multi-modality breast cancer screening, Diagnosis and Treatment, American Scientific Publishers, 2010.

  20. Rajendra Acharya, U., Ng, E. Y. K., Vinitha Sree, S., Chua, C. K., and Chattopadhyay, S., Higher order spectra analysis of breast thermograms for the automated identification of breast cancer. Expert Systems, 2012. doi:10.1111/j.1468-0394.2012.00654.x.

    Google Scholar 

  21. Etehad Tavakol, M., Chandran, V., Ng, E. Y. K., and Kafieh, R., Breast cancer detection from thermal images using bispectral invariant features. International Journal of Thermal Sciences 69:21–36, 2013.

    Article  Google Scholar 

  22. Schaefer, G., Závišek, M., and Nakashima, T., Thermography based breast cancer analysis using statistical features and fuzzy classification. Pattern Recognition 42:1133–1137, 2009.

    Article  Google Scholar 

  23. Boquete, L., Ortega, S., Miguel-Jiménez, J. M., Rodríguez-Ascariz, J. M., and Blanco, R., Automated detection of breast cancer in thermal infrared images, based on independent component analysis. Journal of Medical Systems 36(1):103–111, 2012.

    Article  Google Scholar 

  24. Lee, M.-Y., and Yang, C.-S., Entropy-based feature extraction and decision tree induction for breast cancer diagnosis with standardized thermograph images. Computer Methods and Programs in Biomedicine 100(3):269–282, 2010.

    Article  MathSciNet  Google Scholar 

  25. Jayashree, M., Menaka, M., Venkatraman, B., Baldev, B., Detection of breast lesions by infrared thermography. Proceedings of National Seminar on Medical Thermography, 21 Sept. –22 Sept, Chennai, India. 6–9, 2011.

  26. Etehad Tavakol, M., Ng, E. Y. K., Chandran, V., and Rabbani, H., Separable and non-separable discrete wavelet transform based texture features and image classification of breast thermograms. Infrared Physics Technology 61:274–286, 2013.

    Article  Google Scholar 

  27. Vaisblat, A. V., Vesnin, S. G., Konkin, M. A., Lashchenkov, A. V., Tihomirova, N. N., Using microwave radiometry for detection of breast cancer, RES Ltd., Radiometry Company Literature Publisher. Russia, 2000.

  28. Ng, E. Y., Fok, S. C., Peh, Y. C., Ng, F. C., and Sim, L. S. J., Computerized detection of breast cancer with artificial intelligence and thermograms. Journal of Medical Engineering and Technology 26:152–157, 2002.

    Article  Google Scholar 

  29. Kapoor, P., Prasad, S. V. A. V., and Patni, S., Automatic analysis of breast thermograms for tumor detection based on biostatistical feature extraction and ANN. International Journal of Emerging Trends in Engineering and Development 2(7):245–255, 2012.

    Google Scholar 

  30. Kapoor, P., Prasad, S. V. A. V., and Bhayana, E., Real time intelligent thermal analysis approach for early diagnosis of breast cancer. International Journal of Computer Applications 1(5):33–36, 2010.

    Article  Google Scholar 

  31. Kapoor, P., and Prasad, S. V. A. V., Image processing for early diagnosis of breast cancer using infrared images. Proc. of 2nd Inl. Conf. on Computer and Automation engineering, Feb. – 28 Feb. Singapore. 564–566, 2010.

  32. Zadeh, H. G., Kazerouni, I. A., and Haddadnia, J., Diagnosis of breast cancer and clustering technique using thermal indicators exposed by infrared images. Journal of American Science 7(9):281–288, 2011.

    Google Scholar 

  33. Candes E, Demanet L, Donoho D, Ying L. “Fast discrete curvelet transforms”, 2005.

  34. Candes, E. J., and Donoho, D. L., Curvelets, Multi-resolution Representation, and Scaling Laws, Wavelet Applications in Signal and Image Processing VIII, SPIE 4119, 2000.

  35. Thakare, V. S., Patil, N. N., and Sonawane, J. S., Survey on image texture classification techniques. International Journal of Advancements in Technology 4(1):97–104, 2013.

    Article  Google Scholar 

  36. Haralick, R. M., Shanmugam, K., and Dinstein, I., Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics 3:610–621, 1973.

    Article  Google Scholar 

  37. Sovi, I., Lipi, T., Gjenero, L., Grubi, I., and Skala, K., Experimental verification of heat source parameter estimation from 3D thermograms. Periodicum Biologorum UDC 113(4):417–423, 2011.

    Google Scholar 

  38. Umadevi, V., Raghavan, S. V., and Jaipurkar, S., Framework for estimating tumor parameters using thermal imaging. Indian Journal of Medical Research 134:725–731, 2011.

    Article  Google Scholar 

  39. Gedik, N., and Atasoy, A., A computer-aided diagnosis system for breast cancer detection by using a curvelet transform. Turkish Journal of Electrical Engineering & Computer Sciences. 21:1002–1014, 2013.

    Google Scholar 

Download references

Declaration of Interest

The authors report no declarations of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheeja V. Francis.

Appendix I

Appendix I

Haralick’s Texture Features

{p(i, j)} is the Normalized GLCM.

N is the number of gray levels in {p(i, j)}.

$$ \mathrm{Angular}\kern0.5em \mathrm{second}\kern0.5em \mathrm{moment}\kern0.5em \left(\mathrm{Energy}\right):{f}_1={\displaystyle {\sum}_{i=1}^N}{\displaystyle {\sum}_{j=1}^N}{\left\{p\left(i,j\right)\right\}}^2 $$
$$ \mathrm{Contrast}:{f}_2={\displaystyle {\sum}_{i=1}^{N-1}}{n}^2\left\{{\displaystyle {\sum}_{i=1}^N}{\displaystyle {\sum}_{j=1}^N}\left\{p\left(i,j\right)\right\}\right\} $$
$$ \mathrm{Correlation}:{f}_3=\frac{{\displaystyle {\sum}_i}{\displaystyle {\sum}_j}(ij)p\left(i,j\right)-{\mu}_x{\mu}_y}{\sigma_x{\sigma}_y} $$
$$ \mathrm{Sum}\kern0.5em \mathrm{of}\kern0.5em \mathrm{squares}-\mathrm{variance}:{f}_4={\displaystyle \sum_i}{\displaystyle \sum_j}{\left(i-\mu \right)}^2p\left(i,j\right) $$
$$ \mathrm{Inverse}\kern0.5em \mathrm{Difference}\kern0.5em \mathrm{Moment}:{f}_5={\displaystyle \sum_i}{\displaystyle \sum_j}\frac{1}{1+{\left(i-j\right)}^2}p\left(i,j\right) $$
$$ \mathrm{Sum}\kern0.5em \mathrm{Variance}:{f}_7={\displaystyle {\sum}_{i=2}^{2N}}{\left(i-{f}_s\right)}^2{p}_{\left(x+y\right)}(i) $$
$$ \mathrm{Sum}\kern0.5em \mathrm{Entropy}:{f}_8=-{\displaystyle {\sum}_{i=2}^{2N}{p}_{\left(x+y\right)}(i) \log \left\{{p}_{\left(x+y\right)}(i)\right\}} $$
$$ \mathrm{Entropy}:{f}_9=-{\displaystyle {\sum}_i}{\displaystyle {\sum}_j}p\left(i,j\right) \log \left\{p\left(i,j\right)\right\} $$
$$ \mathrm{Difference}\kern0.5em \mathrm{variance}:{f}_{10}= variance\kern0.5em of\kern0.5em {p}_{\left(x-y\right)} $$
$$ \mathrm{Difference}\kern0.5em \mathrm{Entropy}:{f}_{11}=-{\displaystyle \sum_{i=0}^{N-1}{p}_{\left(x-y\right)}(i) \log \left\{{p}_{\left(x-y\right)}(i)\right\}} $$
$$ \mathrm{Information}\kern0.5em \mathrm{measure}\kern0.5em \mathrm{of}\kern0.5em \mathrm{correlation}\kern0.5em 1:{f}_{12}=\frac{ HXY- HXY1}{ \max \left( HX, HY\right)} $$
$$ \mathrm{Information}\kern0.5em \mathrm{measure}\kern0.5em \mathrm{of}\kern0.5em \mathrm{correlation}\kern0.5em 2:{f}_{13}={\left(1- \exp \left[-0.2\left( HXY2- HXY\right)\right]\right)}^{1/2} $$
$$ \mathrm{Where}\kern0.5em \mathrm{HXY}\kern0.5em =-{\displaystyle {\sum}_i}{\displaystyle {\sum}_j}p\left(i,j\right) \log \left\{p\left(i,j\right)\right\} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, S.V., Sasikala, M. & Saranya, S. Detection of Breast Abnormality from Thermograms Using Curvelet Transform Based Feature Extraction. J Med Syst 38, 23 (2014). https://doi.org/10.1007/s10916-014-0023-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-014-0023-3

Keywords