Abstract
This work presents a method for liver isolation in magnetic resonance imaging (MRI) abdomen images. It is based on a priori statistical information about the shape of the liver obtained from a training set using the segmentation approach. Morphological watershed algorithm is used as a key technique as it is a simple and intuitive method, producing a complete division of the image in separated regions even if the contrast is poor, and it is fast, with possibility for parallel implementation. To overcome the over-segmentation problem of the watershed process, image preprocessing and post-processing are applied. Morphological smoothing, Gaussian smoothing, intensity thresholding, gradient computation and gradient thresholding are proposed for preprocessing with morphological and graph based region adjacent list constructed for region merging. A new integrated region similarity function is also defined for region merging control. The proposed method produces good isolation of liver in axial MRI images of the abdomen, as is shown in this paper.
Similar content being viewed by others
References
Heiken, J. P., Wegman, P. J., and Lee, J. K. T., Detection of focal hepatic masses: Prospective evaluation with CT, delayed CT, CT during arterial portography, and MR imaging. Radiology 171:47–51, 1989.
Sung, J. L., Wang, T. H., and Yu, J. Y., Clinical study on primary carcinoma of the liver in Taiwan. Amer. J. Dig. Dis 12:101036–1049, 1967.
Lim, S. J., Jeong, Y. Y., and ans Ho, Y. S., Automatic liver segmentation for volume measurement in CT Images. J. Vis. Commun. Image Represent 17:4860–875, 2006.
Woodhouse, C. E., Ney, D. R., Sitzmann, J. V., and Fishman, E. K., Spiral computed tomography arterial portography with three-dimensional volumetric rendering for oncologic planning: A retrospective analysis. Invest. Radiol 29:1031–1037, 1994.
Soyer, P., Roche, A., Gad, M., Shapeero, L., Breittmayer, F., Elias, D., Lasser, P., Rougier, P., and Levesque, M., Preoperative segmental localization of hepatic metastases: Utility of three-dimensional CT during arterial portography. Radiology 180:653–658, 1991.
Kuszyk, B. S., Ney, D. R., and Fishman, E. K., The current state of the art in 3D oncologic imaging: An overview. Int. J. Radiat. Oncol. Biol. Phys 33:1029–1039, 1995.
Bae, K. T., Giger, M. L., Chen, C. T., and Kahn, C. E., Automatic segmentation of liver structure in CT images. Med. Phys 20:71–78, 1993.
Brummer, M. E., Mersereau, R. M., Eisner, R. L., and Lewine, R. R. J., Automatic detection of brain contour in MRI data sets. IEEE Trans. Med. Imag 12:153–166, 1993.
Philip, K. P., Dove, E. L., McPherson, D. D., etal, Automatic detection of myocardial contours in cine-computed tomographic images. IEEE Trans. Med. Imag 13:241–253, 1994.
Williams, D. M., Bland, P., Liu, L., Farjo, L., Francis, I. R., and Meyer, C. R., Liver-tumor boundary detection: Human observer vs. computer edge detection. Invest. Radiol 24:768–775, 1989.
Campadelli, P., and Casiraghi, E., Liver segmentation from CT scans: A survey. Proc. LNCS 4578:520–528, 2007.
Rogovich, A., Nepa, P., Manara, G., and Monorchio, A., RF coils for MRI applications—A design procedure. IEEE Antennas Propagation Soc. Int. Symp. 1B:856–859, 2005.
Nakamichi, K., Karungaru, S., Fukumi, M., and Akamatsu, N., Extraction of the liver tumor in CT images by Real-Coded Genetic Algorithm (RGA). In Proc. IASTED Intl. Conf. Comp. Intell. (CI 2006), pp. 366–371, 2006.
Campadelli, P., Casiraghi, E., and Lombardi, G., Automatic liver segmentation from abdominal CT scans. In Intl. Conf. Image Anal. Process, pp. 731–736, 2007.
Zhanga, X., Fujitab, H., Harab, T., Zhoub, X., Kanematsuc, M., Yokoyamac, R., Kondoc, H., and Hoshi, H., CAD on liver using CT and MRI. Proc. Intl. Conf. Med. Imag. Informatics (MIMI 2007), pp. 279–288, 2007.
Jack, C. R. Jr., Shiung, M. M., Gunter, J. L., O’Brien, P. C., Weigand, S. D., Knopman, D. S., Boeve, B. F., Ivnik, R. J., Smith, G. E., Cha, R. H., Tangalos, E. G., and Petersen, R. C., Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62:591–600, 2004.
Nemitz, O., Rumpf, M., Tasdizen, T., and Whitaker, R., Anisotropic curvature motion for structure enhancing smoothing of 3D MR angiography data. JMIV 27:3217–229, 2007.
Shen, D. F., and Huang, M. T., A watershed-based image segmentation using JND property. IEEE Int. Conf. Acoust. Speech Signal Process Proc. 3:377–380, 2003.
Haris, K., and Efstratiadis, N., Hybrid image segmentation using watershed and fast region merging. IEEE Trans. Image. Proc 7:121684–169, 1998.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Logeswaran, R., Haw, T.W. & Sarker, S.Z. Liver Isolation in Abdominal MRI. J Med Syst 32, 259–268 (2008). https://doi.org/10.1007/s10916-008-9131-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10916-008-9131-2