[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A New Alternative WENO Scheme Based on Exponential Polynomial Interpolation with an Improved Order of Accuracy

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this study, we present a new alternative formulation of a conservative weighted essentially non-oscillatory (WENO) scheme that improves the performance of the known fifth-order alternative WENO (AWENO) schemes. In the formulation of the fifth-order AWENO scheme, the numerical flux can be written in two terms: a low-order flux and a high-order correction flux. The low-order numerical flux is constructed by a fifth-order WENO interpolator, and the high-order correction flux includes terms of the second and fourth derivatives, yielding the sixth-order truncation error. Noticing the difference in the convergence rates between these two approximations, this study first aims to fill the accuracy gap by enhancing the approximation order of the low-order numerical flux. To this end, the WENO interpolator for the low-order term is implemented using exponential polynomials with a shape parameter. Selecting a locally optimized shape parameter, the proposed WENO interpolator achieves an additional order of improvement, resulting in the overall sixth order of accuracy of the final reconstruction, under the same fifth-order AWENO framework. In addition, since a linear approximation to the high-order correction term may cause some oscillations in the vicinity of strong shocks, we present a new strategy for the limiting procedure to deal with the second derivative term in the high-order correction flux. Several numerical results for the well-known benchmark test problems confirm the reliability of our AWENO method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Acker, F., Borges, R., Costa, B.: An improved WENO-Z scheme. J. Comput. Phys. 313, 726–753 (2016)

    MathSciNet  Google Scholar 

  2. Balsara, D.S., Bhoriya, D., Shu, C.-W., Kumar, H.: Efficient alternative finite difference WENO schemes for hyperbolic systems with non-conservative products. https://doi.org/10.48550/arXiv.2403.01266 (2024)

  3. Balsara, D.S., Shu, C.-W.: Monotonicity prserving WENO schemes with increasingly high-order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    MathSciNet  Google Scholar 

  4. Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016)

    MathSciNet  Google Scholar 

  5. Bigoni, C., Hesthaven, J.: Adaptive WENO methods based on radial basis function reconstruction. J. Sci. Comput. 72, 986–1020 (2017)

    MathSciNet  Google Scholar 

  6. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    MathSciNet  Google Scholar 

  7. Chen, L.L., Huang, C.: An improved WLS-WENO method for solving hyperbolic conservation laws. J. Comput. Phys. 392, 96–114 (2019)

    MathSciNet  Google Scholar 

  8. Christlieb, A.J., Feng, X., Jiang, Y., Tang, Q.: A high-order finite difference WENO scheme for ideal magnetohydrodynamics on curvilinear meshes. SIAM J. Sci. Comput. 40(4), A2631–A2666 (2018)

    MathSciNet  Google Scholar 

  9. Cravero, I., Semplice, M.: On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes. J. Sci. Comput. 67(3), 1219–1246 (2016)

    MathSciNet  Google Scholar 

  10. Don, W.S., Li, D.-M., Gao, Z., Wang, B.-S.: A characteristic-wise alternative WENO-Z finite difference scheme for solving the compressible multicomponent non-reactive flows in the overestimated quasi-conservative form. J. Sci. Comput. 82, 27 (2020)

    MathSciNet  Google Scholar 

  11. Emery, A.F.: An evaluation of several differencing methods for inviscid fluid flow problems. J. Comput. Phys. 2, 306–331 (1968)

    MathSciNet  Google Scholar 

  12. Gao, Z., Fang, L., Wang, B.-S., Wang, Y., Don, W.S.: Seventh and ninth orders characteristic-wise alternative WENO finite difference schemes for hyperbolic conservation laws. Comput. Fluids 202, 104519 (2020)

    MathSciNet  Google Scholar 

  13. Gottlieb, S., Mullen, J.S., Ruuth, S.J.: A fifth order flux implicit WENO method. J. Sci. Comput. 27, 271–287 (2006)

    MathSciNet  Google Scholar 

  14. Gerolymos, G.A., Sénéchal, D., Vallet, I.: Very-high-order WENO schemes. J. Comput. Phys. 228, 8481–8524 (2009)

    MathSciNet  Google Scholar 

  15. Glimm, J., Grove, J., Li, X., Oh, W., Tan, D.C.: The dynamics of bubble growth for Rayleigh–Taylor unstable interfaces. Phys. Fluids 31, 447–465 (1988)

    Google Scholar 

  16. Gu, Y., Gao, Z., Hu, G., Li, P., Wang, L.: High order finite difference alternative WENO scheme for multi-component flows. J. Sci. Comput. 89, 52 (2021)

    MathSciNet  Google Scholar 

  17. Kim, C.H., Ha, Y., Yoon, J.: Modified nonlinear weights for fifth-order weighted essentially non-oscillatory schemes. J. Sci. Comput. 299–323, 67 (2016)

    Google Scholar 

  18. Ha, Y., Kim, C.H., Yang, H., Yoon, J.: Sixth-order weighted essentially non-oscillatory schemes based on exponential polynomials. SIAM J. Sci. Comput. 38(4), A1987–A2017 (2016)

    Google Scholar 

  19. Ha, Y., Kim, C.H., Yang, H., Yoon, J.: Improving accuracy of the fifth-order WENO scheme by using the exponential approximation space. SIAM J. Numer. Anal. 59, 143–172 (2021)

    MathSciNet  Google Scholar 

  20. Ha, Y., Kim, C.H., Lee, Y.J., Yoon, J.: An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. J. Comput. Phys. 232, 68–86 (2013)

    MathSciNet  Google Scholar 

  21. Harten, A., Osher, S.: Uniformly high-order accurate non-oscillatory schemes I. SIAM J. Numer. Anal. 24, 279–309 (1987)

    MathSciNet  Google Scholar 

  22. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high-order accurate non-oscillatory schemes III. J. Comput. Phys. 71, 231–303 (1987)

    MathSciNet  Google Scholar 

  23. Hesthaven, J.S., Mönkeberg, F.: Entropy stable essentially nonoscillatory methods based on RBF reconstruction. ESAIM: M2AN 53, 925–958 (2019)

    MathSciNet  Google Scholar 

  24. Hesthaven, J.S., Mönkeberg, F.: Two-dimensional RBF-ENO method on unstructured grids. J. Sci. Comput. 82, 1–24 (2020)

    MathSciNet  Google Scholar 

  25. Hesthaven, J.S., Mönkeberg, F.: Hybrid high-resolution RBF-ENO method. J. Comput. Phys X 12, 100089 (2021)

    MathSciNet  Google Scholar 

  26. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted-essentially-non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Google Scholar 

  27. Jeong, B., Yang, H., Yoon, J.: Development of a WENO scheme based on radial basis function with an improved convergence order. J. Comput. Phys. 468, 111502 (2022)

    MathSciNet  Google Scholar 

  28. Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    MathSciNet  Google Scholar 

  29. Jiang, Y., Shu, C.-W., Zhang, M.: An alternative formulation of finite difference WENO schemes with Lax–Wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35, A1137–A1160 (2013)

    Google Scholar 

  30. Jiang, Y., Shu, C.-W., Zhang, M.: Free-stream preserving finite difference schemes on curvilinear meshes. Methods Appl. Anal. 21, 1–30 (2014)

    MathSciNet  Google Scholar 

  31. Hu, X.Y., Wang, Q., Adams, N.A.: An adapive central-upwind weighted essentially non-oscillatory scheme. J. Comput. Phys. 229, 8952–8965 (2010)

    MathSciNet  Google Scholar 

  32. Hu, X.Y., Adams, N.A.: Scale separation for implicit large eddy simulation. J. Comput. Phys. 230, 7240–7249 (2011)

    MathSciNet  Google Scholar 

  33. Käser, M., Iske, A.: ADER schemes on adaptive triangular meshes for scalar conservation laws. J. Comput. Phys. 205, 486–508 (2005)

    MathSciNet  Google Scholar 

  34. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    MathSciNet  Google Scholar 

  35. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. M2AN Math. Model. Numer. Anal. 33, 547–571 (1999)

    MathSciNet  Google Scholar 

  36. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22, 656–672 (2000)

    MathSciNet  Google Scholar 

  37. Li, P., Li, T., Don, W.-S., Wang, B.-S.: Scale-invariant multi-resolution alternative WENO scheme for the Euler equations. J. Sci. Comput. 94, 15 (2023)

    MathSciNet  Google Scholar 

  38. Liu, H.: A numerical study of the performance of alternative weighted ENO methods based on various numerical fluxes for conservation law. Appl. Math. Comput. 296, 182–197 (2017)

    MathSciNet  Google Scholar 

  39. Li, G., Qiu, J.: Hybrid weighted essentially non-oscillatory schemes with different indicators. J. Comput. Phys. 229, 8105–8129 (2010)

    MathSciNet  Google Scholar 

  40. Liu, H., Qiu, J.: Finite dierence Hermite WENO schemes for conservation laws, II: an alternative approach. J. Sci. Comput. 66, 598–624 (2016)

    MathSciNet  Google Scholar 

  41. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    MathSciNet  Google Scholar 

  42. Liu, H.X., Jiao, X.M.: WLS-ENO: weighted-least-squares based essentially non-oscillatory schemes for finite volume methods on unstructured meshes. J. Comput. Phys. 314, 749–773 (2016)

    MathSciNet  Google Scholar 

  43. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shockârbulence interaction. J. Comput. Phys. 178, 81–117 (2002)

    MathSciNet  Google Scholar 

  44. Schulz-Rinne, C.W., Collins, J.P., Glaz, H.M.: Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14, 1394–1414 (1993)

    MathSciNet  Google Scholar 

  45. Shen, Y.Q., Yang, G.W.: Hybrid finite compact-WENO schemes for shock calculation. Int. J. Numer. Methods Fluids 53, 531–560 (2007)

    MathSciNet  Google Scholar 

  46. Shi, J., Zhang, Y.-T., Shu, C.-W.: Resolution of high order WENO schemes for complicated flow structures. J. Comput. Phys. 186, 690–696 (2003)

    MathSciNet  Google Scholar 

  47. Shi, Y., Guo, Y.: A fifth order alternative compact-WENO finite difference scheme for compressible Euler equations. J. Comput. Phys. 397, 108873 (2019)

    MathSciNet  Google Scholar 

  48. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    MathSciNet  Google Scholar 

  49. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

    MathSciNet  Google Scholar 

  50. Sod, G.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)

    MathSciNet  Google Scholar 

  51. Titarev, V.A., Toro, E.F.: Finite volume WENO schemes for three-dimensional conservation laws. J. Comput. Phys. 201, 238–260 (2014)

    MathSciNet  Google Scholar 

  52. Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics. Springer, New York (1997)

    Google Scholar 

  53. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994)

    Google Scholar 

  54. Wang, B.-S., Don, W.S., Garg, N.K., Kurganov, A.: Fifth-order A-WENO finite-difference schemes based on a new adaptive diffusion central numerical flux. SIAM J. Sci. Comput. 42, A3932–A3956 (2020)

    MathSciNet  Google Scholar 

  55. Wang, B.-S., Li, P., Gao, Z., Don, W.S.: An improved fifth order alternative WENO-Z finite difference scheme for hyperbolic conservation laws. J. Comput. Phys. 374, 469–477 (2018)

    MathSciNet  Google Scholar 

  56. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    MathSciNet  Google Scholar 

  57. Xu, Z.F., Shu, C.-W.: Anti-diffusive flux corrections for high order finite difference WENO schemes. J. Comput. Phys. 205, 458–485 (2005)

    MathSciNet  Google Scholar 

  58. Young, Y.-N., Tufo, H., Dubey, A., Rosner, R.: On the miscible Rayleigh–Taylor instability: two and three dimensions. J. Fluid Mech. 447, 377–408 (2001)

    Google Scholar 

  59. Zhang, R., Zhang, M., Shu, C.-W.: On the order of accuracy and numerical performance of two classes of finite volume WENO schemes. Commun. Comput. Phys. 5, 836–848 (2009)

    MathSciNet  Google Scholar 

  60. Zhu, J., Qiu, J.: Trigonometric WENO schemes for hyperbolic conservation laws and highly oscillatory problems. Commun. Comput. Phys. 8, 1242–1263 (2010)

    MathSciNet  Google Scholar 

  61. Zhu, J., Qiu, J.: WENO schemes and their application as limiters for RKDG methods based on trigonometric approximation spaces. J. Sci. Comput. 55, 606–644 (2013)

    MathSciNet  Google Scholar 

  62. Zhu, J., Qiu, J.X.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)

    MathSciNet  Google Scholar 

  63. Zhu, J., Qiu, J.X.: A new type of finite volume WENO schemes for hyperbolic conservation laws. J. Sci. Comput. 73, 1338–1359 (2017)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the grants NRF-2022R1F1A1066389 (H. Yang), and RS-2023-00208864, NRF-2019R1A6A1A11051177 (J. Yoon) of the National Research Foundation of Korea.

Funding

Youngsoo Ha were supported by the grant NRF-2021R1A2C1095443 through the National Research Foundation of Korea, Hyoseon Yang is supported by NRF-2022R1F1A1066389 and Jungho Yoon is supported by RS-2023-00208864 and NRF-2019R1A6A1A11051177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoseon Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

  • The Lax–Friedrichs (LF) flux. The LF flux is defined by

    $$\begin{aligned} {\hat{f}}^{\textrm{LF}}_{j+1/2}(u^{-}, u^+) = \frac{1}{2}[(f(u^-) + f(u^+)) - \alpha (u^+ - u^-)], \end{aligned}$$

    where \(\alpha \) is taken as an upper bound over the whole line for \(|f'(u)|\) in the scalar case, or the absolute value of eigenvalues of the Jacobian for the system case.

  • The HLLC flux. The HLLC flux is a modified version of the HLL flux, whereby the missing contact and shear waves are restored. The HLLC flux for the Euler equations \(q=(\rho ,\rho u,E)^T\) is given by

    $$\begin{aligned} {\hat{f}}^{\textrm{HLLC}}_{j+1/2}(q^{-}, q^+) = {\left\{ \begin{array}{ll} f(q^-) &{} \text { if } 0 \le s^-, \\ f(q^-)+s^-(q^{0-} - q^-) &{} \text { if } s^- \le s^0, \\ f(q^+)+s^+(q^{0+} - q^+) &{} \text { if } s^0 \le s^+, \\ f(q^+) &{} \text { if } s^+ \le 0, \end{array}\right. } \end{aligned}$$
    (51)

    where by defining the averaging operation \(\bar{f} = \frac{1}{2}(f^+ + f^-)\) and the difference operation \(\varDelta f = f^+ - f^-\),

    $$\begin{aligned}&q^{0\pm } = \rho ^{\pm } \frac{s^{\pm } - u^{\pm }}{s^{\pm } - s^0} \begin{bmatrix} 1 \\ s^0 \\ \frac{E^{\pm }}{\rho ^{\pm }}+(s^0 - u^{\pm }) \Big (s^0 +\frac{p^{\pm }}{s^{\pm } - u^{\pm }}\Big ) \end{bmatrix}, \\&p^0 = \bar{p} - \frac{1}{2} \varDelta \bar{\rho } \bar{c}, \quad s^0 = \bar{u} - \frac{1}{2} \frac{\varDelta p}{\bar{\rho } \bar{c}}, \quad s^{\pm } = u^{\pm } \pm c^{\pm } Q^{\pm }, \\&Q^{\pm } = {\left\{ \begin{array}{ll} 1 &{} \text { if } p^0 \le p^{\pm }, \\ \Big (1 + \frac{\gamma + 1}{2 \gamma } (\frac{p^0}{p^{\pm }}-1) \Big )^{1/2} &{} \text { if }p^{\pm } \le p^0. \end{array}\right. } \end{aligned}$$
  • Ideal weights \(d_k\) based on exponential polynomials. Let \(\bar{x}= x_{j+1/2}\). The explicit forms of the Lagrange functions based on exponential polynomials in (16) are given as follows:

    $$\begin{aligned}{} & {} \ell _0(\bar{x})= \frac{3}{128} -\frac{5}{1024}(\lambda \varDelta x)^2 +\frac{65}{98304}(\lambda \varDelta x)^4 -\frac{179}{2359296}(\lambda \varDelta x)^6 + {{\mathcal {O}}}(\varDelta x^8) \nonumber \\{} & {} \ell _1(\bar{x})= -\frac{5}{32} +\frac{(\lambda \varDelta x)^2}{128} -\frac{29}{24576} (\lambda \varDelta x)^4 +\frac{53}{368640} (\lambda \varDelta x)^6 + {{\mathcal {O}}}(\varDelta x^8) \nonumber \\{} & {} \ell _2(\bar{x})= \frac{45}{64} +\frac{3}{512} \,(\lambda \varDelta x)^2 - \frac{7}{16384} (\lambda \varDelta x)^4 + \frac{47}{1966080}(\lambda \varDelta x)^6 + {{\mathcal {O}}}(\varDelta x^8) \nonumber \\{} & {} \ell _3(\bar{x})= \frac{15}{32} -\frac{1}{64}(\lambda \varDelta x)^2 +\frac{43}{24576}(\lambda \varDelta x)^4 -\frac{259}{1474560} (\lambda \varDelta x)^6 + {{\mathcal {O}}}(\varDelta x^8) \nonumber \\{} & {} \ell _4(\bar{x})= -\frac{5}{128} +\frac{7}{1024}(\lambda \varDelta x)^2 -\frac{79}{98304}(\lambda \varDelta x)^4 +\frac{989}{11796480}(\lambda \varDelta x)^6 + {{\mathcal {O}}}(\varDelta x^8). \end{aligned}$$
    (52)

    Moreover, letting \({{\bar{c}}_\lambda }= \cosh (\frac{\lambda \varDelta x}{2})\), the linear weights \({\bar{d}}_k\) based on exponential polynomials are of the form:

    $$\begin{aligned} \begin{aligned} {\bar{d}}_0&=\frac{{{\bar{c}}_\lambda }+2}{12{{\bar{c}}_\lambda }\,({{\bar{c}}_\lambda } +1)^2} = \frac{1}{16} - \frac{5}{384}(\lambda \varDelta x)^2 + {{\mathcal {O}}}(\varDelta x^4) \\ {\bar{d}}_1&=\frac{6{{\bar{c}}_\lambda }^3 +12{{\bar{c}}_\lambda }^2 +{{\bar{c}}_\lambda } -4}{6{{\bar{c}}_\lambda } ({{\bar{c}}_\lambda } +1)^2 } =\,\frac{5}{8} \, +\frac{13}{192}(\lambda \varDelta x)^2 +{{\mathcal {O}}}(\varDelta x^4) \\ {\bar{d}}_2&=\frac{3{{\bar{c}}_\lambda } +2}{4{{\bar{c}}_\lambda }\,({{\bar{c}}_\lambda } +1)^2 } =\frac{5}{16} - \frac{7}{128}(\lambda \varDelta x)^2 + {{\mathcal {O}}}(\varDelta x^4). \end{aligned} \end{aligned}$$
    (53)
  • Limiters for the correction term \({\hat{f}}^H\). To demonstrate the advantage of our limiters to the second derivative in the correction term \(\hat{f}^H\), we provide a comparison of performance between AWENO schemes with limited second derivative and central differences. In Fig. 14, we display the numerical results of the tested AWENO-E schemes for ‘Mach 3 wind tunnel problem’ in Example 4.10. We can see that the AWENO-E scheme with central differences generates more oscillations.

Fig. 14
figure 14

Density profiles of wind tunnel problem at \(t = 4\): (top) AWENO-E with limiters to the second derivative. (bottom) AWENO-E with the second-order central difference

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, Y., Kim, C.H., Yang, H. et al. A New Alternative WENO Scheme Based on Exponential Polynomial Interpolation with an Improved Order of Accuracy. J Sci Comput 101, 5 (2024). https://doi.org/10.1007/s10915-024-02635-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02635-w

Keywords

Navigation