Abstract
A combined hybrid mixed and hybridizable discontinuous Galerkin method is formulated for the flow and transport equations. Convergence of the method is obtained by deriving optimal a priori error bounds in the L\(^2\) norm in space. Since the velocity in the transport equation depends on the flow problem, the stabilization parameter in the HDG method is a function of the discrete velocity. In addition, a key ingredient in the convergence proof is the construction of a projection that is shown to satisfy optimal approximation bounds. Numerical examples confirm the theoretical convergence rates and show the efficiency of high order discontinuous elements.
Similar content being viewed by others
Data Availability
The data can be obtained from the authors on reasonable request.
References
Arbogast, T., Xiao, H.: Two-level mortar domain decomposition preconditioners for heterogeneous elliptic problems. Comput. Methods Appl. Mech. Eng. 292, 221–242 (2015). https://doi.org/10.1016/j.cma.2014.10.049
Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. (2002). https://doi.org/10.1137/S0036142901384162
Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, vol. 44. Springer (2013)
Brezzi, F., Douglas, J., Jr., Durán, R., Fortin, M.: Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51, 237–250 (1987)
Brezzi, F., Douglas, J., Jr., Marini, L.D.: Two families of mixed elements for second order elliptic problems. Numer. Math. 88, 217–235 (1985)
Cesmelioglu, A., Pham, D., Rhebergen, S.: A hybridizable discontinuous Galerkin method for the fully coupled time-dependent Stokes/Darcy-transport problem. ESAIM: M2AN 57, 1257–1296 (2023). https://doi.org/10.1051/m2an/2023016
Cesmelioglu, A., Rhebergen, S.: A compatible embedded-hybridized discontinuous Galerkin method for the Stokes-Darcy-transport problem. Commun. Appl. Math. Comput. 4, 293–318 (2021). https://doi.org/10.1007/s42967-020-00115-0
Chen, G., Hu, W., Shen, J., Singler, J., Zhang, Y., Zheng, X.: An HDG method for distributed control of convection diffusion PDEs. J. Comput. Appl. Math. 343, 643–661 (2018). https://doi.org/10.1016/j.cam.2018.05.028
Chen, Y., Cockburn, B.: Analysis of variable-degree HDG methods for convection-diffusion equations. Part i: general nonconforming meshes. IMA J. Numer. Anal. 32(4), 1267–1293 (2012). https://doi.org/10.1093/imanum/drr058
Cockburn, B., Dong, B.: An analysis of the minimal dissipation local discontinuous Galerkin method for convection-diffusion problems. J. Sci. Comput. 32(2), 233–262 (2007). https://doi.org/10.1007/s10915-007-9130-3
Cockburn, B., Gopalakrishnan, J., Sayas, F.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010). https://doi.org/10.1090/S0025-5718-10-02334-3
Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78, 1–24 (2009). https://doi.org/10.1090/S0025-5718-08-02146-7
Darlow, B., Ewing, R., Wheeler, M.: Mixed finite flement method for miscible displacement problems in porous media. Soc. Pet. Eng. J. 24(04), 391–398 (1984). https://doi.org/10.2118/10501-PA
Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques et Applications, vol. 69. Springer-Verlag, Berlin Heidelberg (2012)
Douglas, J., Jr., Ewing, R., Wheeler, M.: The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO. Anal. numér. 17(1), 17–33 (1983). https://doi.org/10.1051/m2an/1983170100171
Du, S., Sayas, F.J.: An Invitation to the Theory of the Hybridizable Discontinuous Galerkin Method: Projections, Estimates, Tools. Springer Briefs in Mathematics. Springer International Publishing (2019)
Egger, H., Schöberl, J.: A hybrid mixed discontinuous Galerkin finite-element method for convection-diffusion problems. IMA J. Numer. Anal. 30(4), 1206–1234 (2010). https://doi.org/10.1093/imanum/drn083
Ern, A., Guermond, J.L.: Finite Elements I. Texts in Applied Mathematics. Springer International Publishing (2021). https://doi.org/10.1007/978-3-030-56341-7
Ewing, R., Russell, T., Wheeler, M.: Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Eng. 47(1), 73–92 (1984). https://doi.org/10.1016/0045-7825(84)90048-3
Fabien, M., Knepley, M., Riviere, B.: A high order hybridizable discontinuous Galerkin method for incompressible miscible displacement in heterogeneous media. Results Appl. Math. (2020). https://doi.org/10.1016/j.rinam.2019.100089
Fu, G., Yang, Y.: A hybrid-mixed finite element method for single-phase Darcy flow in fractured porous media. Adv. Water Resour. (2022). https://doi.org/10.1016/j.advwatres.2022.104129
Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer-Verlag (1986)
Nédélec, J.C.: Mixed finite elements in \(\mathbb{R} ^3\). Numer. Math. 35, 315–341 (1980)
Nédélec, J.C.: A new family of mixed finite elements in \(\mathbb{R} ^3\). Numer. Math. 50, 57–81 (1986)
Nguyen, N., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009). https://doi.org/10.1016/j.jcp.2009.01.030
Schöberl, J.: NETGEN—An advancing front 2D/3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1(1), 41–52 (1997)
Schöberl, J.: C++11 Implementation of Finite Elements in NGSolve. ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology (2014)
Shuyu, S., Riviere, B., Wheeler, M.: A Combined Mixed Finite Element and Discontinuous Galerkin Method for Miscible Displacement Problem in Porous Media. In: Recent Progress in Computational and Applied PDES, pp. 323–351. Springer US (2002). https://doi.org/10.1007/978-1-4615-0113-8_23
Stenberg, R.: Postprocessing schemes for some mixed finite elements. ESAIM: M2AN 25(1), 151–167 (1991). https://doi.org/10.1051/m2an/1991250101511
Wheeler, M., Yotov, I.: Mixed finite element methods for modeling flow and transport in porous media. pp. 337–357. World Scientific Singapore (1995). https://doi.org/10.1142/9789814531955
Zhang, J., Han, H., Guo, H., Shen, X.: A combined mixed hybrid element method for incompressible miscible displacement problem with local discontinuous Galerkin procedure. Numer. Methods Partial Differ. Equ. 36(6), 1629–1647 (2020). https://doi.org/10.1002/num.22495
Zhang, J., Qin, R., Yu, Y., Zhu, J., Yu, Y.: Hybrid mixed discontinuous Galerkin finite element method for incompressible wormhole propagation problem. Comput. Math. Appl. 138, 23–36 (2023). https://doi.org/10.1016/j.camwa.2023.02.023
Zhang, J., Yu, Y., Zhu, J., Qin, R., Yu, Y., Jiang, M.: Hybrid mixed discontinuous Galerkin finite element method for incompressible miscible displacement problem. Appl. Numer. Math. 198, 122–37 (2022)
Funding
Keegan L. A. Kirk gratefully acknowledges support from the Natural Sciences and Engineering Research Council of Canada through the Postdoctoral Fellowship Program (PDF-568008); Beatrice Riviere gratefully acknowledges support from the National Science Foundation NSF-DMS 2111459.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no Conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kirk, K.L.A., Riviere, B. A Combined Mixed Hybrid and Hybridizable Discontinuous Galerkin Method for Darcy Flow and Transport. J Sci Comput 100, 57 (2024). https://doi.org/10.1007/s10915-024-02607-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-024-02607-0