[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Combined Mixed Hybrid and Hybridizable Discontinuous Galerkin Method for Darcy Flow and Transport

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A combined hybrid mixed and hybridizable discontinuous Galerkin method is formulated for the flow and transport equations. Convergence of the method is obtained by deriving optimal a priori error bounds in the L\(^2\) norm in space. Since the velocity in the transport equation depends on the flow problem, the stabilization parameter in the HDG method is a function of the discrete velocity. In addition, a key ingredient in the convergence proof is the construction of a projection that is shown to satisfy optimal approximation bounds. Numerical examples confirm the theoretical convergence rates and show the efficiency of high order discontinuous elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data can be obtained from the authors on reasonable request.

References

  1. Arbogast, T., Xiao, H.: Two-level mortar domain decomposition preconditioners for heterogeneous elliptic problems. Comput. Methods Appl. Mech. Eng. 292, 221–242 (2015). https://doi.org/10.1016/j.cma.2014.10.049

    Article  MathSciNet  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. (2002). https://doi.org/10.1137/S0036142901384162

    Article  Google Scholar 

  3. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, vol. 44. Springer (2013)

    Book  Google Scholar 

  4. Brezzi, F., Douglas, J., Jr., Durán, R., Fortin, M.: Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51, 237–250 (1987)

    Article  MathSciNet  Google Scholar 

  5. Brezzi, F., Douglas, J., Jr., Marini, L.D.: Two families of mixed elements for second order elliptic problems. Numer. Math. 88, 217–235 (1985)

    Article  MathSciNet  Google Scholar 

  6. Cesmelioglu, A., Pham, D., Rhebergen, S.: A hybridizable discontinuous Galerkin method for the fully coupled time-dependent Stokes/Darcy-transport problem. ESAIM: M2AN 57, 1257–1296 (2023). https://doi.org/10.1051/m2an/2023016

    Article  MathSciNet  Google Scholar 

  7. Cesmelioglu, A., Rhebergen, S.: A compatible embedded-hybridized discontinuous Galerkin method for the Stokes-Darcy-transport problem. Commun. Appl. Math. Comput. 4, 293–318 (2021). https://doi.org/10.1007/s42967-020-00115-0

    Article  MathSciNet  Google Scholar 

  8. Chen, G., Hu, W., Shen, J., Singler, J., Zhang, Y., Zheng, X.: An HDG method for distributed control of convection diffusion PDEs. J. Comput. Appl. Math. 343, 643–661 (2018). https://doi.org/10.1016/j.cam.2018.05.028

    Article  MathSciNet  Google Scholar 

  9. Chen, Y., Cockburn, B.: Analysis of variable-degree HDG methods for convection-diffusion equations. Part i: general nonconforming meshes. IMA J. Numer. Anal. 32(4), 1267–1293 (2012). https://doi.org/10.1093/imanum/drr058

    Article  MathSciNet  Google Scholar 

  10. Cockburn, B., Dong, B.: An analysis of the minimal dissipation local discontinuous Galerkin method for convection-diffusion problems. J. Sci. Comput. 32(2), 233–262 (2007). https://doi.org/10.1007/s10915-007-9130-3

    Article  MathSciNet  Google Scholar 

  11. Cockburn, B., Gopalakrishnan, J., Sayas, F.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010). https://doi.org/10.1090/S0025-5718-10-02334-3

    Article  MathSciNet  Google Scholar 

  12. Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78, 1–24 (2009). https://doi.org/10.1090/S0025-5718-08-02146-7

    Article  MathSciNet  Google Scholar 

  13. Darlow, B., Ewing, R., Wheeler, M.: Mixed finite flement method for miscible displacement problems in porous media. Soc. Pet. Eng. J. 24(04), 391–398 (1984). https://doi.org/10.2118/10501-PA

    Article  Google Scholar 

  14. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques et Applications, vol. 69. Springer-Verlag, Berlin Heidelberg (2012)

    Google Scholar 

  15. Douglas, J., Jr., Ewing, R., Wheeler, M.: The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO. Anal. numér. 17(1), 17–33 (1983). https://doi.org/10.1051/m2an/1983170100171

    Article  MathSciNet  Google Scholar 

  16. Du, S., Sayas, F.J.: An Invitation to the Theory of the Hybridizable Discontinuous Galerkin Method: Projections, Estimates, Tools. Springer Briefs in Mathematics. Springer International Publishing (2019)

    Book  Google Scholar 

  17. Egger, H., Schöberl, J.: A hybrid mixed discontinuous Galerkin finite-element method for convection-diffusion problems. IMA J. Numer. Anal. 30(4), 1206–1234 (2010). https://doi.org/10.1093/imanum/drn083

    Article  MathSciNet  Google Scholar 

  18. Ern, A., Guermond, J.L.: Finite Elements I. Texts in Applied Mathematics. Springer International Publishing (2021). https://doi.org/10.1007/978-3-030-56341-7

    Book  Google Scholar 

  19. Ewing, R., Russell, T., Wheeler, M.: Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Eng. 47(1), 73–92 (1984). https://doi.org/10.1016/0045-7825(84)90048-3

    Article  MathSciNet  Google Scholar 

  20. Fabien, M., Knepley, M., Riviere, B.: A high order hybridizable discontinuous Galerkin method for incompressible miscible displacement in heterogeneous media. Results Appl. Math. (2020). https://doi.org/10.1016/j.rinam.2019.100089

    Article  MathSciNet  Google Scholar 

  21. Fu, G., Yang, Y.: A hybrid-mixed finite element method for single-phase Darcy flow in fractured porous media. Adv. Water Resour. (2022). https://doi.org/10.1016/j.advwatres.2022.104129

    Article  Google Scholar 

  22. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer-Verlag (1986)

    Book  Google Scholar 

  23. Nédélec, J.C.: Mixed finite elements in \(\mathbb{R} ^3\). Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  Google Scholar 

  24. Nédélec, J.C.: A new family of mixed finite elements in \(\mathbb{R} ^3\). Numer. Math. 50, 57–81 (1986)

    Article  MathSciNet  Google Scholar 

  25. Nguyen, N., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009). https://doi.org/10.1016/j.jcp.2009.01.030

    Article  MathSciNet  Google Scholar 

  26. Schöberl, J.: NETGEN—An advancing front 2D/3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1(1), 41–52 (1997)

    Article  Google Scholar 

  27. Schöberl, J.: C++11 Implementation of Finite Elements in NGSolve. ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology (2014)

  28. Shuyu, S., Riviere, B., Wheeler, M.: A Combined Mixed Finite Element and Discontinuous Galerkin Method for Miscible Displacement Problem in Porous Media. In: Recent Progress in Computational and Applied PDES, pp. 323–351. Springer US (2002). https://doi.org/10.1007/978-1-4615-0113-8_23

  29. Stenberg, R.: Postprocessing schemes for some mixed finite elements. ESAIM: M2AN 25(1), 151–167 (1991). https://doi.org/10.1051/m2an/1991250101511

    Article  MathSciNet  Google Scholar 

  30. Wheeler, M., Yotov, I.: Mixed finite element methods for modeling flow and transport in porous media. pp. 337–357. World Scientific Singapore (1995). https://doi.org/10.1142/9789814531955

  31. Zhang, J., Han, H., Guo, H., Shen, X.: A combined mixed hybrid element method for incompressible miscible displacement problem with local discontinuous Galerkin procedure. Numer. Methods Partial Differ. Equ. 36(6), 1629–1647 (2020). https://doi.org/10.1002/num.22495

    Article  Google Scholar 

  32. Zhang, J., Qin, R., Yu, Y., Zhu, J., Yu, Y.: Hybrid mixed discontinuous Galerkin finite element method for incompressible wormhole propagation problem. Comput. Math. Appl. 138, 23–36 (2023). https://doi.org/10.1016/j.camwa.2023.02.023

    Article  MathSciNet  Google Scholar 

  33. Zhang, J., Yu, Y., Zhu, J., Qin, R., Yu, Y., Jiang, M.: Hybrid mixed discontinuous Galerkin finite element method for incompressible miscible displacement problem. Appl. Numer. Math. 198, 122–37 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Keegan L. A. Kirk gratefully acknowledges support from the Natural Sciences and Engineering Research Council of Canada through the Postdoctoral Fellowship Program (PDF-568008); Beatrice Riviere gratefully acknowledges support from the National Science Foundation NSF-DMS 2111459.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keegan L. A. Kirk.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirk, K.L.A., Riviere, B. A Combined Mixed Hybrid and Hybridizable Discontinuous Galerkin Method for Darcy Flow and Transport. J Sci Comput 100, 57 (2024). https://doi.org/10.1007/s10915-024-02607-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02607-0

Keywords

Mathematics Subject Classification

Navigation