Abstract
We introduce a novel class of ultra-convergent structures for the Finite Volume Element (FVE) method. These structures are characterized by asymmetric and optional superconvergent points. We establish a crucial relationship between ultra-convergence properties and the orthogonality condition. Remarkably, within this framework, certain FVE schemes achieve simultaneous superconvergence of both derivatives and function values at designated points, as demonstrated in Example 2. This is a phenomenon rarely observed in other numerical methods. Theoretical validation of these findings is provided through the proposed Generalized M-Decomposition (GMD). Numerical experiments effectively substantiate our results.
Similar content being viewed by others
Data Availability
The code used in this work will be made available upon request to the authors.
References
Babuška, I., Banerjee, U., Osborn, J.E.: Superconvergence in the generalized finite element method. Numer. Math. 107(3), 353–395 (2007)
Bai, Y., Wu, Y., Xie, X.: Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method. Sci. China Math. 59(9), 1835–1850 (2016)
Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24(4), 777–787 (1987)
Cai, Z., Mandel, J., McCormick, S.: The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28(2), 392–402 (1991)
Cao, W., Zhang, X., Zhang, Z., Zou, Q.: Superconvergence of immersed finite volume methods for one-dimensional interface problems. J. Sci. Comput. 73(2–3), 543–565 (2017)
Cao, W., Zhang, Z., Zou, Q.: Superconvergence of any order finite volume schemes for 1D general elliptic equations. J. Sci. Comput. 56(3), 566–590 (2013)
Cao, W., Zhang, Z., Zou, Q.: Is 2k-conjecture valid for finite volume methods? SIAM J. Numer. Anal. 53(2), 942–962 (2015)
Chen, C., Huang, Y.: High accuracy theory of finite element methods (In Chinese). Hunan Science and Technology Publishing House (1995)
Chen, L.: A new class of high order finite volume methods for second order elliptic equations. SIAM J. Numer. Anal. 47(6), 4021–4043 (2010)
Chen, Z., Li, R., Zhou, A.: A note on the optimal L2-estimate of the finite volume element method. Adv. Comput. Math. 16(4), 291–303 (2002)
Chen, Z., Xu, Y., Zhang, Y.: A construction of higher-order finite volume methods. Math. Comput. 84(292), 599–628 (2015)
Chou, S.-H., Ye, X.: Superconvergence of finite volume methods for the second order elliptic problem. Comput. Methods Appl. Mech. Engrgy 196(37–40), 3706–3712 (2007)
Cockburn, B., Fu, G.: Superconvergence by M-decompositions. Part II: construction of two-dimensional finite elements. ESAIM Math. Model. Number Anal. 51(1), 165–186 (2017)
Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39(6), 1865–1888 (2002)
Hao, J., Xiao, F., Xie, B.: Large-eddy simulation of wall-bounded incompressible turbulent flows based on multi-moment finite volume formulation. J. Comput. Phys. 513, 113184 (2024)
He, W., Zhang, Z., Zou, Q.: Local superconvergence of post-processed high-order finite volume element solutions. Adv. Comput. Math. 46(4), 1–26 (2020)
Hong, Q., Wu, J.: Coercivity results of a modified Q1-finite volume element scheme for anisotropic diffusion problems. Adv. Comput. Math. 44(3), 897–922 (2018)
Hu, J., Ma, L., Ma, R.: Optimal superconvergence analysis for the Crouzeix-Raviart and the Morley elements. Adv. Comput. Math. 47(4), 1–25 (2021)
Huang, J., Xi, S.: On the finite volume element method for general self-adjoint elliptic problems. SIAM J. Numer. Anal. 35(5), 1762–1774 (1998)
Huang, Q., Zhou, H., Ren, Y., Wang, Q.: A general positivity-preserving algorithm for implicit high-order finite volume schemes solving the Euler and Navier-Stokes equations. J. Comput. Phys. 508, 112999 (2024)
Křížek, M., Neittaanmäki, P.: On superconvergence techniques. Acta Appl. Math. 9(3), 175–198 (1987)
Li, R., Chen, Z., Wu, W.: Generalized difference methods for differential equations. Marcel Dekker (2000)
Li, Y., Zhao, T., Zhang, Z., Wang, T.: The high order augmented finite volume methods based on series expansion for nonlinear degenerate parabolic equations. J. Sci. Comput. 88(1), 1 (2021)
Liebau, F.: The finite volume element method with quadratic basis functions. Computing 57(4), 281–299 (1996)
Lin, Q., Yan, N.: The construction and analysis for efficient finite elements (In Chinese). Hebei University Press House (1996)
Lin, R., Zhang, Z.: Natural superconvergence points in three-dimensional finite elements. SIAM J. Number Anal. 46(3), 1281–1297 (2008)
Lin, T., Ye, X.: A posteriori error estimates for finite volume method based on bilinear trial functions for the elliptic equation. J. Comput. Appl. Math. 254, 185–191 (2013)
Lin, Y., Yang, M., Zou, Q.: L2 error estimates for a class of any order finite volume schemes over quadrilateral meshes. SIAM J. Number Anal. 53(4), 2030–2050 (2015)
Liu, M., Shu, S., Yuan, G., Yue, X.: Two nonlinear positivity-preserving finite volume schemes for three-dimensional heat conduction equations on general polyhedral meshes. Commun. Comput. Phys. 30(4), 1185–1215 (2021)
Lou, Y., Rui, H.: A quadratic discontinuous finite volume element scheme for stokes problems. J. Sci. Comput. 99(2), 44 (2024)
Lv, J., Li, Y.: L2 error estimates and superconvergence of the finite volume element methods on quadrilateral meshes. Adv. Comput. Math. 37(3), 393–416 (2012)
Lv, J., Li, Y.: Optimal biquadratic finite volume element methods on quadrilateral meshes. SIAM J. Number Anal. 50(5), 2379–2399 (2012)
Nie, C., Shu, S., Yu, H., Yang, Y.: Superconvergence and asymptotic expansion for semidiscrete bilinear finite volume element approximation of the parabolic problem. Comput. Math. Appl. 66(1), 91–104 (2013)
Schmidt, T.: Box schemes on quadrilateral meshes. Computing 51(3–4), 271–292 (1993)
Sheng, Z., Yuan, G.: Analysis of the nonlinear scheme preserving the maximum principle for the anisotropic diffusion equation on distorted meshes. Sci. China Math. 65(11), 2379–2396 (2022)
Su, S., Tang, H., Wu, J.: An efficient positivity-preserving finite volume scheme for the nonequilibrium three-temperature radiation diffusion equations on polygonal meshes. Commun. Comput. Phys. 30(2), 448–485 (2021)
Thomée, V.: High order local approximations to derivatives in the finite element method. Math. Comput. 31(139), 652–660 (1977)
Wahlbin, L.B.: Superconvergence in Galerkin finite element methods. Springer, Berlin (1995)
Wang, X., Huang, W., Li, Y.: Conditioning of the finite volume element method for diffusion problems with general simplicial meshes. Math. Comp. 88(320), 2665–2696 (2019)
Wang, X., Li, Y.: L2 error estimates for high order finite volume methods on triangular meshes. SIAM J. Number Anal. 54(5), 2729–2749 (2016)
Wang, X., Lv, J., Li, Y.: New superconvergent structures developed from the finite volume element method in 1D. Math. Comput. 90(329), 1179–1205 (2021)
Wang, X., Zhang, Y.: On the construction and analysis of finite volume element schemes with optimal L2 convergence rate. Number Math. Theory Methods Appl. 14(1), 47–70 (2021)
Xu, J., Zou, Q.: Analysis of linear and quadratic simplicial finite volume methods for elliptic equations. Number Math. 111(3), 469–492 (2009)
Yang, M., Bi, C., Liu, J.: Postprocessing of a finite volume element method for semilinear parabolic problems. ESAIM Math. Model. Number Anal. 43(5), 957–971 (2009)
Zhang, Y., Wang, X.: Unified construction and L2 analysis for the finite volume element method over tensorial meshes. Adv. Comput. Math. 49(1), 2 (2023)
Zhang, Z.: Superconvergence points of polynomial spectral interpolation. SIAM J. Number Anal. 50(6), 2966–2985 (2012)
Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26(4), 1192–1213 (2005)
Zhang, Z., Zou, Q.: Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems. Number Math. 130(2), 363–393 (2015)
Zhu, Q., Lin, Q.: The Superconvergence theory of finite elements (In Chinese). Hunan Science and Technology Publishing House (1989)
Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int. J. Number Methods Engrgy 33(7), 1331–1364 (1992)
Funding
This work is supported in part by the National Natural Science Foundation of China (No.12371396) and the National Key Research and Development Program of China (No.2020YFA0713602, 2022YFB3707301).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no additional relevant financial or non-financial interests to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, X., Zhang, Y. & Zhang, Z. Flexible Ultra-convergence Structures for the Finite Volume Element Method. J Sci Comput 101, 15 (2024). https://doi.org/10.1007/s10915-024-02654-7
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-024-02654-7
Keywords
- Superconvergence
- Ultra-convergence
- Finite volume element
- Generalized M-decomposition
- Orthogonality condition