[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Flexible Ultra-convergence Structures for the Finite Volume Element Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We introduce a novel class of ultra-convergent structures for the Finite Volume Element (FVE) method. These structures are characterized by asymmetric and optional superconvergent points. We establish a crucial relationship between ultra-convergence properties and the orthogonality condition. Remarkably, within this framework, certain FVE schemes achieve simultaneous superconvergence of both derivatives and function values at designated points, as demonstrated in Example 2. This is a phenomenon rarely observed in other numerical methods. Theoretical validation of these findings is provided through the proposed Generalized M-Decomposition (GMD). Numerical experiments effectively substantiate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The code used in this work will be made available upon request to the authors.

References

  1. Babuška, I., Banerjee, U., Osborn, J.E.: Superconvergence in the generalized finite element method. Numer. Math. 107(3), 353–395 (2007)

    MathSciNet  Google Scholar 

  2. Bai, Y., Wu, Y., Xie, X.: Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method. Sci. China Math. 59(9), 1835–1850 (2016)

    MathSciNet  Google Scholar 

  3. Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24(4), 777–787 (1987)

    MathSciNet  Google Scholar 

  4. Cai, Z., Mandel, J., McCormick, S.: The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28(2), 392–402 (1991)

    MathSciNet  Google Scholar 

  5. Cao, W., Zhang, X., Zhang, Z., Zou, Q.: Superconvergence of immersed finite volume methods for one-dimensional interface problems. J. Sci. Comput. 73(2–3), 543–565 (2017)

    MathSciNet  Google Scholar 

  6. Cao, W., Zhang, Z., Zou, Q.: Superconvergence of any order finite volume schemes for 1D general elliptic equations. J. Sci. Comput. 56(3), 566–590 (2013)

    MathSciNet  Google Scholar 

  7. Cao, W., Zhang, Z., Zou, Q.: Is 2k-conjecture valid for finite volume methods? SIAM J. Numer. Anal. 53(2), 942–962 (2015)

    MathSciNet  Google Scholar 

  8. Chen, C., Huang, Y.: High accuracy theory of finite element methods (In Chinese). Hunan Science and Technology Publishing House (1995)

  9. Chen, L.: A new class of high order finite volume methods for second order elliptic equations. SIAM J. Numer. Anal. 47(6), 4021–4043 (2010)

    MathSciNet  Google Scholar 

  10. Chen, Z., Li, R., Zhou, A.: A note on the optimal L2-estimate of the finite volume element method. Adv. Comput. Math. 16(4), 291–303 (2002)

    MathSciNet  Google Scholar 

  11. Chen, Z., Xu, Y., Zhang, Y.: A construction of higher-order finite volume methods. Math. Comput. 84(292), 599–628 (2015)

    MathSciNet  Google Scholar 

  12. Chou, S.-H., Ye, X.: Superconvergence of finite volume methods for the second order elliptic problem. Comput. Methods Appl. Mech. Engrgy 196(37–40), 3706–3712 (2007)

    MathSciNet  Google Scholar 

  13. Cockburn, B., Fu, G.: Superconvergence by M-decompositions. Part II: construction of two-dimensional finite elements. ESAIM Math. Model. Number Anal. 51(1), 165–186 (2017)

    MathSciNet  Google Scholar 

  14. Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39(6), 1865–1888 (2002)

    MathSciNet  Google Scholar 

  15. Hao, J., Xiao, F., Xie, B.: Large-eddy simulation of wall-bounded incompressible turbulent flows based on multi-moment finite volume formulation. J. Comput. Phys. 513, 113184 (2024)

    MathSciNet  Google Scholar 

  16. He, W., Zhang, Z., Zou, Q.: Local superconvergence of post-processed high-order finite volume element solutions. Adv. Comput. Math. 46(4), 1–26 (2020)

    MathSciNet  Google Scholar 

  17. Hong, Q., Wu, J.: Coercivity results of a modified Q1-finite volume element scheme for anisotropic diffusion problems. Adv. Comput. Math. 44(3), 897–922 (2018)

    MathSciNet  Google Scholar 

  18. Hu, J., Ma, L., Ma, R.: Optimal superconvergence analysis for the Crouzeix-Raviart and the Morley elements. Adv. Comput. Math. 47(4), 1–25 (2021)

    MathSciNet  Google Scholar 

  19. Huang, J., Xi, S.: On the finite volume element method for general self-adjoint elliptic problems. SIAM J. Numer. Anal. 35(5), 1762–1774 (1998)

    MathSciNet  Google Scholar 

  20. Huang, Q., Zhou, H., Ren, Y., Wang, Q.: A general positivity-preserving algorithm for implicit high-order finite volume schemes solving the Euler and Navier-Stokes equations. J. Comput. Phys. 508, 112999 (2024)

    MathSciNet  Google Scholar 

  21. Křížek, M., Neittaanmäki, P.: On superconvergence techniques. Acta Appl. Math. 9(3), 175–198 (1987)

    MathSciNet  Google Scholar 

  22. Li, R., Chen, Z., Wu, W.: Generalized difference methods for differential equations. Marcel Dekker (2000)

  23. Li, Y., Zhao, T., Zhang, Z., Wang, T.: The high order augmented finite volume methods based on series expansion for nonlinear degenerate parabolic equations. J. Sci. Comput. 88(1), 1 (2021)

    MathSciNet  Google Scholar 

  24. Liebau, F.: The finite volume element method with quadratic basis functions. Computing 57(4), 281–299 (1996)

    MathSciNet  Google Scholar 

  25. Lin, Q., Yan, N.: The construction and analysis for efficient finite elements (In Chinese). Hebei University Press House (1996)

  26. Lin, R., Zhang, Z.: Natural superconvergence points in three-dimensional finite elements. SIAM J. Number Anal. 46(3), 1281–1297 (2008)

    MathSciNet  Google Scholar 

  27. Lin, T., Ye, X.: A posteriori error estimates for finite volume method based on bilinear trial functions for the elliptic equation. J. Comput. Appl. Math. 254, 185–191 (2013)

    MathSciNet  Google Scholar 

  28. Lin, Y., Yang, M., Zou, Q.: L2 error estimates for a class of any order finite volume schemes over quadrilateral meshes. SIAM J. Number Anal. 53(4), 2030–2050 (2015)

    Google Scholar 

  29. Liu, M., Shu, S., Yuan, G., Yue, X.: Two nonlinear positivity-preserving finite volume schemes for three-dimensional heat conduction equations on general polyhedral meshes. Commun. Comput. Phys. 30(4), 1185–1215 (2021)

    MathSciNet  Google Scholar 

  30. Lou, Y., Rui, H.: A quadratic discontinuous finite volume element scheme for stokes problems. J. Sci. Comput. 99(2), 44 (2024)

    MathSciNet  Google Scholar 

  31. Lv, J., Li, Y.: L2 error estimates and superconvergence of the finite volume element methods on quadrilateral meshes. Adv. Comput. Math. 37(3), 393–416 (2012)

    MathSciNet  Google Scholar 

  32. Lv, J., Li, Y.: Optimal biquadratic finite volume element methods on quadrilateral meshes. SIAM J. Number Anal. 50(5), 2379–2399 (2012)

    MathSciNet  Google Scholar 

  33. Nie, C., Shu, S., Yu, H., Yang, Y.: Superconvergence and asymptotic expansion for semidiscrete bilinear finite volume element approximation of the parabolic problem. Comput. Math. Appl. 66(1), 91–104 (2013)

    MathSciNet  Google Scholar 

  34. Schmidt, T.: Box schemes on quadrilateral meshes. Computing 51(3–4), 271–292 (1993)

    MathSciNet  Google Scholar 

  35. Sheng, Z., Yuan, G.: Analysis of the nonlinear scheme preserving the maximum principle for the anisotropic diffusion equation on distorted meshes. Sci. China Math. 65(11), 2379–2396 (2022)

    MathSciNet  Google Scholar 

  36. Su, S., Tang, H., Wu, J.: An efficient positivity-preserving finite volume scheme for the nonequilibrium three-temperature radiation diffusion equations on polygonal meshes. Commun. Comput. Phys. 30(2), 448–485 (2021)

    MathSciNet  Google Scholar 

  37. Thomée, V.: High order local approximations to derivatives in the finite element method. Math. Comput. 31(139), 652–660 (1977)

    MathSciNet  Google Scholar 

  38. Wahlbin, L.B.: Superconvergence in Galerkin finite element methods. Springer, Berlin (1995)

    Google Scholar 

  39. Wang, X., Huang, W., Li, Y.: Conditioning of the finite volume element method for diffusion problems with general simplicial meshes. Math. Comp. 88(320), 2665–2696 (2019)

    MathSciNet  Google Scholar 

  40. Wang, X., Li, Y.: L2 error estimates for high order finite volume methods on triangular meshes. SIAM J. Number Anal. 54(5), 2729–2749 (2016)

    MathSciNet  Google Scholar 

  41. Wang, X., Lv, J., Li, Y.: New superconvergent structures developed from the finite volume element method in 1D. Math. Comput. 90(329), 1179–1205 (2021)

    MathSciNet  Google Scholar 

  42. Wang, X., Zhang, Y.: On the construction and analysis of finite volume element schemes with optimal L2 convergence rate. Number Math. Theory Methods Appl. 14(1), 47–70 (2021)

    Google Scholar 

  43. Xu, J., Zou, Q.: Analysis of linear and quadratic simplicial finite volume methods for elliptic equations. Number Math. 111(3), 469–492 (2009)

    MathSciNet  Google Scholar 

  44. Yang, M., Bi, C., Liu, J.: Postprocessing of a finite volume element method for semilinear parabolic problems. ESAIM Math. Model. Number Anal. 43(5), 957–971 (2009)

    MathSciNet  Google Scholar 

  45. Zhang, Y., Wang, X.: Unified construction and L2 analysis for the finite volume element method over tensorial meshes. Adv. Comput. Math. 49(1), 2 (2023)

    Google Scholar 

  46. Zhang, Z.: Superconvergence points of polynomial spectral interpolation. SIAM J. Number Anal. 50(6), 2966–2985 (2012)

    MathSciNet  Google Scholar 

  47. Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26(4), 1192–1213 (2005)

    MathSciNet  Google Scholar 

  48. Zhang, Z., Zou, Q.: Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems. Number Math. 130(2), 363–393 (2015)

    MathSciNet  Google Scholar 

  49. Zhu, Q., Lin, Q.: The Superconvergence theory of finite elements (In Chinese). Hunan Science and Technology Publishing House (1989)

  50. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int. J. Number Methods Engrgy 33(7), 1331–1364 (1992)

    Google Scholar 

Download references

Funding

This work is supported in part by the National Natural Science Foundation of China (No.12371396) and the National Key Research and Development Program of China (No.2020YFA0713602, 2022YFB3707301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing Zhang.

Ethics declarations

Conflict of interest

The authors have no additional relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, Y. & Zhang, Z. Flexible Ultra-convergence Structures for the Finite Volume Element Method. J Sci Comput 101, 15 (2024). https://doi.org/10.1007/s10915-024-02654-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02654-7

Keywords

Mathematics Subject Classification

Navigation