[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A High-Order Discontinuous Galerkin Method for One-Fluid Two-Temperature Euler Non-equilibrium Hydrodynamics

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we present a high-order discontinuous Galerkin (DG) method for solving the one-fluid two-temperature Euler equations for non-equilibrium hydrodynamics. In order to achieve optimal order of accuracy as well as suppress potential numerical oscillations behind strong shocks, special jump terms are applied in the DG spatial discretization for the nonconservative equation of electronic internal energy. Moreover, inspired by the solution procedure of Riemann problem, we develop a new HLLC (Harten–Lax–van Leer Contact) approximate Riemann solver for the one-fluid two-temperature Euler equations and use it as a building block for the high-order discontinuous Galerkin method. Several key features of the proposed HLLC approximate Riemann solver are analyzed. Finally, we design typical test cases to numerically verify and demonstrate the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Atzeni, S., Meyer-Ter-Vehn, J.: The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter. Oxford University Press, Oxford (2009)

    Google Scholar 

  2. Fan, Z., Liu, Y., Liu, B., Yu, C., Lan, K., Liu, J.: Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments. Matter Radiat. Extremes 2, 3–8 (2017)

    Article  Google Scholar 

  3. Després, B.: Lagrangian systems of conservation laws and approximate Riemann solvers. In: Godunov Methods: Theory and Applications. Springer Science & Business, New York (2001)

  4. Breil, J., Galera, S., Maire, P.-H.: Multi-material ALE computation in inertial confinement fusion code CHIC. Comput. Fluids 46, 116–167 (2011)

    Article  MathSciNet  Google Scholar 

  5. Moiseev, N Ya., Shestakov, E.A.: Solution of the Riemann problem in two and three-temperature gas dynamics. Comput. Math. Math. Phys. 55, 1547–1553 (2015)

    Article  MathSciNet  Google Scholar 

  6. Du, Z.: Riemann solver and the cell-centered Lagrangian scheme for two-temperature compressible fluid flows, Personal communication (2020)

  7. Shiroto, T., Kawai, S., Ohnishi, N.: Structure-preserving operators for thermal-nonequilibrium hydrodynamics. J. Comput. Phys. 364, 1–17 (2018)

    Article  MathSciNet  Google Scholar 

  8. Driollet, D.A., Breil, J., Brull, S., Dubroca, B., Estibals, E.: Modelling and numerical approximations for the nonconservative bitemperature Euler model. ESAIM: M2AN 52, 1353–1383 (2018)

    Article  MathSciNet  Google Scholar 

  9. Chalons, C., Coquel, F.: The Riemann problem for the multi-pressure Euler system. J. Hyperbol. Differ. Equ. 2, 745–782 (2005)

    Article  MathSciNet  Google Scholar 

  10. Lin, G., Karniadakis, G.E.: A discontinuous Galerkin method for two-temperature plasmas. Comput. Methods Appl. Mech. Eng. 195, 3504–3527 (2006)

    Article  MathSciNet  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  Google Scholar 

  12. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional system. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  Google Scholar 

  13. Sangam, A., Estibals, É., Guillard, H.: Derivation and numerical approximation of two-temperature Euler plasma model. J. Comput. Phys. 444, 110565 (2021)

    Article  MathSciNet  Google Scholar 

  14. Cheng, J., Shu, C.-W., Zeng, Q.: A conservative Lagrangian scheme for solving compressible fluid flows with multiple internal energy equations, Commun. Comput. Phys. 12, 1307–1328 (2012)

    Article  MathSciNet  Google Scholar 

  15. Sijoy, C.D., Chaturvedi, S.: TRHD: Three-temperature radiation-hydrodynamics code with an implicit non-equilibrium radiation transport using a cell-centered monotonic finite volume scheme on unstructured-grids. Comput. Phys. Commun. 190, 98–119 (2015)

    Article  MathSciNet  Google Scholar 

  16. Chauvin, R., Guisset, S., Perennou, B.M., Martaud, L.: A colocalized scheme for three-temperature Grey diffusion radiation hydrodynamics. Commun. Comput. Phys. 31, 293–330 (2022)

    Article  MathSciNet  Google Scholar 

  17. Cheng, J., Lei, N., Shu, C.-W.: High-order conservative Lagrangian scheme for three-temperature radiation hydrodynamics. J. Comput. Phys. 496, 112595 (2024)

    Article  MathSciNet  Google Scholar 

  18. Enaux, C., Guisset, S., Lasuen, C., Ragueneau, Q.: Numerical resolution of a three temperature plasma model. J. Sci. Comput. 82, 51 (2020)

    Article  MathSciNet  Google Scholar 

  19. Holst, B.V., Tóth, G., Sokolov, I.V., et al.: CRASH: A block-adaptive-mesh code for radiative shock hydrodynamics-Implementation and verification. Astrophys. J. Suppl. S. 194, 23 (2011)

    Article  Google Scholar 

  20. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994)

    Article  Google Scholar 

  21. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Springer, New York (1976)

    Book  Google Scholar 

  22. Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer Publishing Company, New York City (2014)

    Google Scholar 

  23. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for directly solving the Hamilton–Jacobi equations. J. Comput. Phys. 223, 398–415 (2007)

    Article  MathSciNet  Google Scholar 

  24. Qiu, J., Shu, C.-W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2006)

    Article  MathSciNet  Google Scholar 

  25. Zhu, J., Qiu, J., Shu, C.-W.: High-order Runge–Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters. J. Comput. Phys. 404, 109105 (2020)

    Article  MathSciNet  Google Scholar 

  26. Zhu, J., Qiu, J.: A new type of finite volume WENO schemes for hyperbolic conservation laws. J. Sci. Comput. 73, 1338–1359 (2017)

    Article  MathSciNet  Google Scholar 

  27. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  Google Scholar 

  28. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer Science & Business, Berlin (2009)

    Book  Google Scholar 

  29. Jazar, R.N.: Perturbation Methods in Science and Engineering. Springer, Cham (2021)

    Book  Google Scholar 

  30. LeFloch, P.G., Mohammadian, M.: Why many theories of shock waves are necessary: kinetic functions, equivalent equations, and fourth-order models. J. Comput. Phys. 227, 4162–4189 (2008)

    Article  MathSciNet  Google Scholar 

  31. Castro, M.J., LeFloch, P.G., Muñoz-Ruiz, M.L., Parés, C.: Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J. Comput. Phys. 227, 8107–8129 (2008)

    Article  MathSciNet  Google Scholar 

  32. Batten, P., Clarke, N., Lambert, C., Causon, D.M.: On the choice of wavespeeds for the HLLC Riemann solver. SIAM J. Sci. Comput. 18, 1553–1570 (1997)

    Article  MathSciNet  Google Scholar 

  33. Franquet, E., Perrier, V.: Runge–Kutta discontinuous Galerkin method for the approximation of Baer and Nunziato type multiphase models. J. Comput. Phys. 231, 4096–4141 (2012)

    Article  MathSciNet  Google Scholar 

  34. Miller, D.S.: Splitting shock heating between ions and electrons in an ionized gas. Comput. Fluids 210, 104672 (2020)

    Article  MathSciNet  Google Scholar 

  35. Gouasmi, A., Murman, S.M., Duraisamy, K.: Entropy conservative schemes and the receding flow problem. J. Sci. Comput. 78, 971–994 (2019)

    Article  MathSciNet  Google Scholar 

  36. Lax, P.D., Liu, X.-D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19, 319–340 (1998)

    Article  MathSciNet  Google Scholar 

  37. Pan, L., Li, J., Xu, K.: A few benchmark test cases for higher-order Euler solvers. Numer. Math. Theor. Meth. Appl. 10, 711–736 (2017)

    Article  MathSciNet  Google Scholar 

  38. Zhou, T., Li, Y., Shu, C.W.: Numerical comparison of WENO finite volume and Runge–Kutta discontinuous Galerkin methods. J. Sci. Comput. 16, 2 (2001)

    Article  MathSciNet  Google Scholar 

  39. Tian, B., Fu, D., Ma, Y.: Numerical investigation of Richtmyer–Meshkov instability driven by cylindrical shocks. Acta Mech. Sin. 22, 9–16 (2006)

    Article  Google Scholar 

  40. Sauppe, J.P., Palaniyappan, S., Loomis, E.N., Kline, J.L., Flippo, K.A., Srinivasan, B.: Using cylindrical implosions to investigate hydrodynamic instabilities in convergent geometry. Matter Radiat. Extremes 4, 065403 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Zhifang Du for helpful discussion. This work is supported by the National Natural Science Foundation of China No.12171046 and No. 12031001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In the appendix, we give the eigenvalues and eigenvectors for the matrixes \(\textbf{A}_x(\textbf{U})\) and \(\textbf{A}_y(\textbf{U})\), which are obtained by rewritten (16) into a quasi-linear form as follows

$$\begin{aligned} \frac{\partial \textbf{U}}{\partial t} + \textbf{A}_x(\textbf{U})\frac{\partial \textbf{U}}{\partial x} + \textbf{A}_y(\textbf{U})\frac{\partial \textbf{U}}{\partial y}=0. \end{aligned}$$
(68)

The five eigenvalues of \(\textbf{A}_x(\textbf{U})\) are

$$\begin{aligned} \lambda _1 = u+c, \quad \lambda _2=\lambda _3=\lambda _4=u,\quad \lambda _5 = u-c. \end{aligned}$$
(69)

The corresponding right eigenvectors of \(\textbf{A}_x(\textbf{U})\) are given as

$$\begin{aligned} \mathbf {R_1}= \begin{pmatrix} 1 \\ u+c\\ v\\ H+uc\\ \gamma _\textrm{e} e_\textrm{e}\\ \end{pmatrix}, \mathbf {R_2}= \begin{pmatrix} 1 \\ u \\ v \\ \frac{q^2}{2} \\ 0\\ \end{pmatrix}, \mathbf {R_3}= \begin{pmatrix} 0\\ 0\\ 1\\ v\\ 0\\ \end{pmatrix}, \mathbf {R_4}= \begin{pmatrix} 0\\ 0\\ 0\\ \gamma _\textrm{i}-\gamma _\textrm{e}\\ \gamma _\textrm{i}-1\\ \end{pmatrix}, \mathbf {R_5}= \begin{pmatrix} 1 \\ u-c \\ v \\ H-uc\\ \gamma _\textrm{e} e_\textrm{e} \end{pmatrix},\nonumber \\ \end{aligned}$$
(70)

where \(H = \frac{E+p}{\rho }\) and \(q^2=u^2+v^2\). The left eigenvectors of \(\textbf{A}_x(\textbf{U})\) are given as

$$\begin{aligned} \mathbf {L_1}= & {} \begin{pmatrix} \frac{(\gamma _\textrm{i}-1)q^2-2uc}{4c^2}, &{} \frac{-(\gamma _\textrm{i}-1)u+c}{2c^2}, &{} \frac{-(\gamma _\textrm{i}-1)v}{2c^2}, &{} \frac{(\gamma _\textrm{i}-1)}{2c^2}, &{} \frac{(\gamma _\textrm{e}-\gamma _\textrm{i})}{2c^2} \\ \end{pmatrix},\nonumber \\ \mathbf {L_2}= & {} \begin{pmatrix} \frac{-(\gamma _\textrm{i}-1)q^2+2c^2}{2c^2}, &{} \frac{(\gamma _\textrm{i}-1)u}{c^2}, &{} \frac{(\gamma _\textrm{i}-1)v}{c^2}, &{} \frac{-(\gamma _\textrm{i}-1)}{c^2}, &{} \frac{(\gamma _\textrm{i}-\gamma _\textrm{e})}{c^2} \\ \end{pmatrix},\nonumber \\ \mathbf {L_3}= & {} \begin{pmatrix} -v, &{} 0, &{} 1, &{} 0, &{} 0\\ \end{pmatrix},\nonumber \\ \mathbf {L_4}= & {} \begin{pmatrix} \frac{-\gamma _\textrm{e}e_\textrm{e}q^2}{2c^2}, &{} \frac{\gamma _\textrm{e}e_\textrm{e}u}{c^2}, &{} \frac{\gamma _\textrm{e}e_\textrm{e}v}{c^2}, &{} \frac{-\gamma _\textrm{e}e_\textrm{e}}{c^2}, &{} \frac{\gamma _\textrm{e}e_\textrm{e}+\gamma _\textrm{i}e_\textrm{i}}{c^2} \\ \end{pmatrix},\nonumber \\ \mathbf {L_5}= & {} \begin{pmatrix} \frac{(\gamma _\textrm{i}-1)q^2+2uc}{4c^2}, &{} \frac{-(\gamma _\textrm{i}-1)u-c}{2c^2}, &{} \frac{-(\gamma _\textrm{i}-1)v}{2c^2}, &{} \frac{(\gamma _\textrm{i}-1)}{2c^2}, &{} \frac{(\gamma _\textrm{e}-\gamma _\textrm{i})}{2c^2} \\ \end{pmatrix}. \end{aligned}$$
(71)

Similarly, the five eigenvalues of \(\textbf{A}_y(\textbf{U})\) are

$$\begin{aligned} \lambda _1 = v+c, \quad \lambda _2=\lambda _3=\lambda _4=u,\quad \lambda _5 = v-c. \end{aligned}$$
(72)

The corresponding right eigenvectors of \(\textbf{A}_y(\textbf{U})\) are given as

$$\begin{aligned} \mathbf {R_1}= \begin{pmatrix} 1 \\ u\\ v+c\\ H+vc\\ \gamma _\textrm{e} e_\textrm{e}\\ \end{pmatrix}, \mathbf {R_2}= \begin{pmatrix} 1 \\ u \\ v \\ \frac{q^2}{2} \\ 0\\ \end{pmatrix}, \mathbf {R_3}= \begin{pmatrix} 0\\ 1\\ 0\\ u\\ 0\\ \end{pmatrix}, \mathbf {R_4}= \begin{pmatrix} 0\\ 0\\ 0\\ \gamma _\textrm{i}-\gamma _\textrm{e}\\ \gamma _\textrm{i}-1\\ \end{pmatrix}, \mathbf {R_5}= \begin{pmatrix} 1 \\ u \\ v-c \\ H-vc\\ \gamma _\textrm{e} e_\textrm{e} \end{pmatrix},\nonumber \\ \end{aligned}$$
(73)

and the left eigenvectors of \(\textbf{A}_y(\textbf{U})\) are given as

$$\begin{aligned} \begin{aligned} \mathbf {L_1}&= \begin{pmatrix} \frac{(\gamma _\textrm{i}-1)q^2-2vc}{4c^2}, &{} \frac{-(\gamma _\textrm{i}-1)u}{2c^2}, &{} \frac{-(\gamma _\textrm{i}-1)v+c}{2c^2}, &{} \frac{(\gamma _\textrm{i}-1)}{2c^2}, &{} \frac{(\gamma _\textrm{e}-\gamma _\textrm{i})}{2c^2} \\ \end{pmatrix},\\ \mathbf {L_2}&= \begin{pmatrix} \frac{-(\gamma _\textrm{i}-1)q^2+2c^2}{2c^2}, &{} \frac{(\gamma _\textrm{i}-1)u}{c^2}, &{} \frac{(\gamma _\textrm{i}-1)v}{c^2}, &{} \frac{-(\gamma _\textrm{i}-1)}{c^2}, &{} \frac{(\gamma _\textrm{i}-\gamma _\textrm{e})}{c^2} \\ \end{pmatrix},\\ \mathbf {L_3}&= \begin{pmatrix} -u, &{} 1, &{} 0, &{} 0, &{} 0\\ \end{pmatrix},\\ \mathbf {L_4}&= \begin{pmatrix} \frac{-\gamma _\textrm{e}e_\textrm{e}q^2}{2c^2}, &{} \frac{\gamma _\textrm{e}e_\textrm{e}u}{c^2}, &{} \frac{\gamma _\textrm{e}e_\textrm{e}v}{c^2}, &{} \frac{-\gamma _\textrm{e}e_\textrm{e}}{c^2}, &{} \frac{\gamma _\textrm{e}e_\textrm{e}+\gamma _\textrm{i}e_\textrm{i}}{c^2} \\ \end{pmatrix},\\ \mathbf {L_5}&= \begin{pmatrix} \frac{(\gamma _\textrm{i}-1)q^2+2vc}{4c^2}, &{} \frac{-(\gamma _\textrm{i}-1)u}{2c^2}, &{} \frac{-(\gamma _\textrm{i}-1)v-c}{2c^2}, &{} \frac{(\gamma _\textrm{i}-1)}{2c^2}, &{} \frac{(\gamma _\textrm{e}-\gamma _\textrm{i})}{2c^2} \\ \end{pmatrix}. \end{aligned} \end{aligned}$$
(74)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J. A High-Order Discontinuous Galerkin Method for One-Fluid Two-Temperature Euler Non-equilibrium Hydrodynamics. J Sci Comput 100, 82 (2024). https://doi.org/10.1007/s10915-024-02640-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02640-z

Keywords

Mathematics Subject Classification

Navigation