[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Convergent Authalic Energy Minimization for Disk Area-Preserving Parameterizations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An area-preserving parameterization of a surface is a bijective mapping that maps the surface onto a specified domain and preserves the local area. This paper formulates the computation of disk area-preserving parameterization as an improved optimization problem and develops a preconditioned nonlinear conjugate gradient method with guaranteed theoretical convergence for solving the problem. Numerical experiments indicate that our new approach has significantly improved area-preserving accuracy and computational efficiency compared to other state-of-the-art algorithms. Furthermore, we present an application of surface registration to illustrate the practical utility of area-preserving mappings as parameterizations of surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The MATLAB executable with a user-friendly interface for the preconditioned nonlinear CG method of the AEM (Algorithm 1) can be found at http://tiny.cc/DiskAEM. Other data are available from the corresponding author on request.

Notes

  1. https://www.math.cuhk.edu.hk/~ptchoi/files/densityequalizingmap.zip.

  2. https://www.cs.stonybrook.edu/~gu/software/omt/omt-binary.rar.

References

  1. Digital Shape Workbench—Shape Repository. http://visionair.ge.imati.cnr.it/ontologies/shapes/ (2016)

  2. The Stanford 3D Scanning Repository. http://graphics.stanford.edu/data/3Dscanrep/ (2016)

  3. Sketchfab. https://sketchfab.com/ (2019)

  4. Amestoy, P.R., Davis, T.A., Duff, I.S.: Algorithm 837: AMD, an approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30(3), 381–388 (2004). https://doi.org/10.1145/1024074.1024081

    Article  MathSciNet  Google Scholar 

  5. Choi, G.P.T., Rycroft, C.H.: Density-equalizing maps for simply connected open surfaces. SIAM J. Imag. Sci. 11(2), 1134–1178 (2018). https://doi.org/10.1137/17M1124796

    Article  MathSciNet  Google Scholar 

  6. Dominitz, A., Tannenbaum, A.: Texture mapping via optimal mass transport. IEEE Trans. Vis. Comput. Graphics 16(3), 419–433 (2010). https://doi.org/10.1109/TVCG.2009.64

    Article  Google Scholar 

  7. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7(2), 149–154 (1964)

    Article  MathSciNet  Google Scholar 

  8. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer Berlin Heidelberg (2005). https://doi.org/10.1007/3-540-26808-1_9

  9. Hormann, K., Lévy, B., Sheffer, A.: Mesh parameterization: Theory and practice. In: ACM SIGGRAPH Course Notes (2007). https://doi.org/10.1145/1281500.1281510

  10. Kuo, Y.C., Lin, W.W., Yueh, M.H., Yau, S.T.: Convergent conformal energy minimization for the computation of disk parameterizations. SIAM J. Imag. Sci. 14(4), 1790–1815 (2021). https://doi.org/10.1137/21M1415443

    Article  MathSciNet  Google Scholar 

  11. Lam, K.C., Lui, L.M.: Landmark-and intensity-based registration with large deformations via quasi-conformal maps. SIAM J. Imag. Sci. 7(4), 2364–2392 (2014)

    Article  MathSciNet  Google Scholar 

  12. Lin, W.W., Juang, C., Yueh, M.H., Huang, T.M., Li, T., Wang, S., Yau, S.T.: 3D brain tumor segmentation using a two-stage optimal mass transport algorithm. Sci. Rep. 11, 14686 (2021)

    Article  Google Scholar 

  13. Lin, W.W., Lin, J.W., Huang, T.M., Li, T., Yueh, M.H., Yau, S.T.: A novel 2-phase residual U-net algorithm combined with optimal mass transportation for 3D brain tumor detection and segmentation. Sci. Rep. 12, 6452 (2022)

    Article  Google Scholar 

  14. Lui, L.M., Lam, K.C., Yau, S.T., Gu, X.: Teichmuller mapping (T-map) and its applications to landmark matching registration. SIAM J. Imag. Sci. 7(1), 391–426 (2014)

    Article  MathSciNet  Google Scholar 

  15. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York, NY (2006)

    Google Scholar 

  16. Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H.: Texture mapping progressive meshes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pp. 409–416. ACM, New York, NY, USA (2001). https://doi.org/10.1145/383259.383307

  17. Sheffer, A., Praun, E., Rose, K.: Mesh parameterization methods and their applications. Found. Trends. Comp. Graphics Vis. 2(2), 105–171 (2006)

    Article  Google Scholar 

  18. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing, pp. 109–116 (2007)

  19. Su, K., Cui, L., Qian, K., Lei, N., Zhang, J., Zhang, M., Gu, X.D.: Area-preserving mesh parameterization for poly-annulus surfaces based on optimal mass transportation. Comput. Aided Geom. D. 46, 76–91 (2016). https://doi.org/10.1016/j.cagd.2016.05.005

    Article  MathSciNet  Google Scholar 

  20. Yoshiyasu, Y., Ma, W.C., Yoshida, E., Kanehiro, F.: As-conformal-as-possible surface registration. In: Comput. Graph. Forum, vol. 33, pp. 257–267. Wiley Online Library (2014). https://doi.org/10.1111/cgf.12451

  21. Yoshizawa, S., Belyaev, A., Seidel, H.P.: A fast and simple stretch-minimizing mesh parameterization. In: Proceedings Shape Modeling Applications, 2004., pp. 200–208 (2004). https://doi.org/10.1109/SMI.2004.1314507

  22. Yueh, M.H.: Theoretical foundation of the stretch energy minimization for area-preserving simplicial mappings. SIAM J. Imaging Sci. 16(3), 1142–1176 (2023). https://doi.org/10.1137/22M1505062

    Article  MathSciNet  Google Scholar 

  23. Yueh, M.H., Li, T., Lin, W.W., Yau, S.T.: A novel algorithm for volume-preserving parameterizations of 3-manifolds. SIAM J. Imag. Sci. 12(2), 1071–1098 (2019). https://doi.org/10.1137/18M1201184

    Article  MathSciNet  Google Scholar 

  24. Yueh, M.H., Li, T., Lin, W.W., Yau, S.T.: A new efficient algorithm for volume-preserving parameterizations of genus-one 3-manifolds. SIAM J. Imag. Sci. 13(3), 1536–1564 (2020)

    Article  MathSciNet  Google Scholar 

  25. Yueh, M.H., Lin, W.W., Wu, C.T., Yau, S.T.: An efficient energy minimization for conformal parameterizations. J. Sci. Comput. 73(1), 203–227 (2017). https://doi.org/10.1007/s10915-017-0414-y

    Article  MathSciNet  Google Scholar 

  26. Yueh, M.H., Lin, W.W., Wu, C.T., Yau, S.T.: A novel stretch energy minimization algorithm for equiareal parameterizations. J. Sci. Comput. 78(3), 1353–1386 (2019). https://doi.org/10.1007/s10915-018-0822-7

    Article  MathSciNet  Google Scholar 

  27. Zhao, X., Su, Z., Gu, X.D., Kaufman, A., Sun, J., Gao, J., Luo, F.: Area-preservation mapping using optimal mass transport. IEEE Trans. Vis. Comput. Gr. 19(12), 2838–2847 (2013). https://doi.org/10.1109/TVCG.2013.135

    Article  Google Scholar 

  28. Zou, G., Hu, J., Gu, X., Hua, J.: Authalic parameterization of general surfaces using Lie advection. IEEE Trans. Vis. Comput. Graph. 17(12), 2005–2014 (2011). https://doi.org/10.1109/TVCG.2011.171

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Science and Technology Council grant 112-2115-M-003-015 and the National Center for Theoretical Sciences in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Heng Yueh.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Proof for Convergence

In this section, we establish the global convergence of Algorithm 1. The proofs are inspired by the convergence of the nonlinear CG method presented in [15, Chapter 5]. Our proofs extend this framework to the nonlinear CG method with preconditioners.

The proof is under the assumption that each step length \(\alpha _k\) in the algorithm is appropriately chosen to satisfy the strong Wolfe conditions (22). The existence of such step length \(\alpha _k\) is guaranteed by the following lemma based on the fact that \({E}_A(f)\ge 0\) is bounded below.

Lemma 1

([15, Lemma 3.1]) Let \(\textbf{p}^{(k)}\) be a descent direction at \(\widehat{\textbf{f}}^{(k)}\). Intervals of step lengths satisfying the strong Wolfe conditions (22) always exist.

In practice, to guarantee that the preconditioner-dependent vector \(\textbf{p}^{(k)}\) in (19) is always a descent direction at \(\widehat{\textbf{f}}^{(k)}\), we require a vital inequality stated in the following lemma, a variant of [15, Lemma 5.6].

Lemma 2

Given a preconditioner M with a symmetric positive definite inverse. Suppose the step size \(\alpha _k\) satisfies the strong Wolfe conditions (22). Then, the vector \(\textbf{p}^{(k)}\) satisfies

$$\begin{aligned} -\frac{1}{1-c_2} \le \frac{\nabla {E}_A(\widehat{\textbf{f}}^{(k)})^{\top } \textbf{p}^{(k)}}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert ^2_{M^{-1}}} \le \frac{2c_2 - 1}{1 - c_2}, \end{aligned}$$
(32)

for all \(k \ge 0\), where \(\Vert \cdot \Vert _{M^{-1}}\) denotes the \(M^{-1}\)-norm defined as \( \Vert \textbf{v}\Vert _{M^{-1}} = \sqrt{\textbf{v}^\top M^{-1}\textbf{v}}. \)

Proof

We prove (32) by induction on k. For \(k = 0\), from (19a), we have

$$\begin{aligned} \frac{\nabla {E}_A(\widehat{\textbf{f}}^{(0)})^{\top } \textbf{p}^{(0)}}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(0)}) \Vert ^2_{M^{-1}}} = \frac{-\nabla {E}_A(\widehat{\textbf{f}}^{(0)})^{\top } M^{-1} \textbf{g}^{(0)}}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(0)}) \Vert ^2_{M^{-1}}} = \frac{-\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(0)}) \Vert ^2_{M^{-1}}}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(0)}) \Vert ^2_{M^{-1}}} = -1. \end{aligned}$$

Next, we assume (32) holds for some \(k=n\). Then, from (19b), we have

$$\begin{aligned} \frac{\nabla {E}_A(\widehat{\textbf{f}}^{(n+1)})^{\top } \textbf{p}^{(n+1)}}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(n+1)}) \Vert ^2_{M^{-1}}}&= \frac{\nabla {E}_A(\widehat{\textbf{f}}^{(n+1)})^{\top } M^{-1} \textbf{g}^{(n+1)}}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(n+1)}) \Vert ^2_{M^{-1}}} + \beta _{n+1} \frac{\nabla {E}_A(\widehat{\textbf{f}}^{(n+1)})^{\top } \textbf{p}^{(n)}}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(n+1)}) \Vert ^2_{M^{-1}}} \nonumber \\&= -1 + \frac{{{\textbf{g}}^{(n+1)}}^\top M^{-1} {\textbf{g}}^{(n+1)}}{{\textbf{g}^{(n)}}^\top M^{-1} \textbf{g}^{(n)}} \frac{\nabla {E}_A(\widehat{\textbf{f}}^{(n+1)})^{\top } \textbf{p}^{(n)}}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(n+1)}) \Vert ^2_{M^{-1}}} \nonumber \\&= -1 + \frac{\nabla {E}_A(\widehat{\textbf{f}}^{(n+1)})^{\top } \textbf{p}^{(n)}}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(n)}) \Vert ^2_{M^{-1}}}. \end{aligned}$$
(33)

By (22b), we have \( |\nabla {E}_A(\widehat{\textbf{f}}^{(n+1)})^{\top } \textbf{p}^{(n)}| \le -c_2 \nabla {E}_A(\widehat{\textbf{f}}^{(n)})^{\top } \textbf{p}^{(n)}, \) i.e.,

$$\begin{aligned} c_2 \nabla {E}_A(\widehat{\textbf{f}}^{(n)})^{\top } \textbf{p}^{(n)} \le \nabla {E}_A(\widehat{\textbf{f}}^{(n+1)})^{\top } \textbf{p}^{(n)} \le -c_2 \nabla {E}_A(\widehat{\textbf{f}}^{(n)})^{\top } \textbf{p}^{(n)}. \end{aligned}$$
(34)

As a result, from (33) and (34), we have

$$\begin{aligned} -1 + c_2\frac{\nabla {E}_A(\widehat{\textbf{f}}^{(n)})^\top \textbf{p}^{(n)}}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(n)}) \Vert ^2_{M^{-1}}}&\le \frac{\nabla {E}_A(\widehat{\textbf{f}}^{(n+1)})^\top \textbf{p}^{(n+1)}}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(n+1)}) \Vert ^2_{M^{-1}}} \\&\le -1 - c_2\frac{\nabla {E}_A(\widehat{\textbf{f}}^{(n)})^{\top } \textbf{p}^{(n)}}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(n)}) \Vert ^2_{M^{-1}}}. \end{aligned}$$

Then, from the induction hypothesis, we have

$$\begin{aligned} -\frac{1}{1-c_2} = -1 - \frac{c_2}{1-c_2} \le \frac{\nabla {E}_A(\widehat{\textbf{f}}^{(n+1)})^{\top } \textbf{p}^{(n+1)}}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(n+1)}) \Vert ^2_{M^{-1}}} \le -1 + \frac{c_2}{1-c_2} = \frac{2c_2 - 1}{1 - c_2}, \end{aligned}$$

which shows that (32) holds for \(k=n+1\). \(\square \)

The second inequality of (32) in Lemma 2 guarantees the vector \(\textbf{p}^{(k)}\) being a descent direction at \(\textbf{f}^{(k)}\). When \(c_2\) in (22b) satisfies \(0<c_2<\frac{1}{2}\), we obtain the following corollary.

Corollary 2

Suppose the step size \(\alpha _k\) satisfies the strong Wolfe conditions (22) with \(0<c_2<\frac{1}{2}\). Then, \(\textbf{p}^{(k)}\) is a descent direction at \(\widehat{\textbf{f}}^{(k)}\).

Proof

Note that the function \(\varphi (x) = \frac{2x-1}{1-x}\) is monotonically increasing on \([0, \frac{1}{2}]\) with \(\varphi (0) = -1\) and \(\varphi (\frac{1}{2}) = 0\). From the assumption \(0<c_2<\frac{1}{2}\) and Lemma 2, we have

$$\begin{aligned} \frac{\nabla {E}_A(\widehat{\textbf{f}}^{(k)})^{\top } \textbf{p}^{(k)}}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert ^2_{M^{-1}}} \le \frac{2c_2 - 1}{1 - c_2} < 0. \end{aligned}$$

Hence \(\nabla {E}_A(\widehat{\textbf{f}}^{(k)})^{\top } \textbf{p}^{(k)}<0\), and therefore, \(\textbf{p}^{(k)}\) is a descent direction at \(\widehat{\textbf{f}}^{(k)}\). \(\square \)

The authalic energy for simplicial mapping can be regarded as a function of 2n variables as

$$\begin{aligned} E_A(f) \equiv E_A(\textbf{f}) \equiv E_A(f_1^1, \ldots , f_n^1, f_1^2, \ldots , f_n^2), \end{aligned}$$
(35)

provided that n is the number of vertices of the triangular mesh model. To prove the global convergence theorem, \(E_A\) and its gradient are essential to be Lipschitz continuous. Here, we prove the Lipschitz continuities in the following lemma.

Lemma 3

Let \(E_A:[-1,1]^{2n}\rightarrow \mathbb {R}\) be the authalic energy (2) represented in the form (35). Then, \(E_A\) and its gradient \(\nabla E_A\) are Lipschitz continuous.

Proof

For every pair of disk-shaped simplicial mappings \(\textbf{x}\) and \(\textbf{y}\in [-1,1]^{2n}\), we define \(g(t) = E_A((1-t)\textbf{x}+ t\textbf{y})\). Since \(E_A\) is smooth, by the mean value theorem, there is a value \(\xi \in (0,1)\) such that \(\textbf{z}= (1-\xi ) \textbf{x}+ \xi \textbf{y}\) and

$$\begin{aligned}E_A(\textbf{y}) - E_A(\textbf{x}) = g(1) - g(0) = g'(\xi ) = \nabla E_A(\textbf{z})^\top (\textbf{y}- \textbf{x}).\end{aligned}$$

Since the domain of \(E_A\) is compact, we obtain

$$\begin{aligned}\Vert E_A(\textbf{y}) - E_A(\textbf{x})\Vert \le C_1 \Vert \textbf{y}- \textbf{x}\Vert ,\end{aligned}$$

where the Lipschitz constant \(C_1 = \max _{\textbf{f}\in [-1,1]^{2n}} \Vert \nabla E(\textbf{f})\Vert \).

Similarly, to prove the Lipschitz continuity of the gradient of \(E_A\), we define \(\phi (t) = (\nabla E_A(\textbf{y}) - \nabla E_A(\textbf{x}))^\top \nabla E_A((1-t)\textbf{x}+ t\textbf{y})\). Since \(\nabla E_A\) is smooth, by the mean value theorem, there is a value \(\eta \in (0,1)\) such that \(\textbf{w}= (1-\eta ) \textbf{x}+ \eta \textbf{y}\) and

$$\begin{aligned} \Vert \nabla E_A(\textbf{y}) - \nabla E_A(\textbf{x})\Vert ^2&= \phi (1) - \phi (0) = \phi '(\eta ) \\&= (\nabla E_A(\textbf{y}) - \nabla E_A(\textbf{x}))^\top \nabla ^2 E_A(\textbf{w}) (\textbf{y}- \textbf{x}), \end{aligned}$$

Since the domain of \(E_A\) is compact, we obtain

$$\begin{aligned} \Vert \nabla E_A(\textbf{y}) - \nabla E_A(\textbf{x})\Vert ^2&\le C_2 \Vert \nabla E_A(\textbf{y}) - \nabla E_A(\textbf{x}) \Vert \Vert \textbf{y}- \textbf{x}\Vert , \end{aligned}$$

where the Lipschitz constant \(C_2 = \max _{\textbf{f}\in [-1,1]^{2n}} \Vert \nabla ^2 E(\textbf{f})\Vert \). \(\square \)

To extend the Lipschitz continuity in M-norm, we provide the following lemma.

Lemma 4

Let M be a symmetric positive definite matrix and \(f: \mathbb {R}^n \rightarrow \mathbb {R}^n\) be Lipschitz continuous with respect to the Euclidean norm, i.e.,

$$\begin{aligned}\Vert f(\textbf{x}) - f(\textbf{y})\Vert \le c_f \, \Vert \textbf{x} - \textbf{y}\Vert ,\end{aligned}$$

for some constant \(c_f \ge 0\). Then it also satisfies Lipschitz continuity in the M-norm, i.e.,

$$\begin{aligned}\Vert f(\textbf{x}) - f(\textbf{y}) \Vert _M \le m_f \, \Vert \textbf{x} - \textbf{y}\Vert _M,\end{aligned}$$

for some constant \(m_f\ge 0\).

Proof

Since M is symmetric positive definite, M is invertible and there exist symmetric positive definite matrices \(M^{1/2}\) and \(M^{-1/2}\) that satisfies \(M = M^{1/2} M^{1/2}\) and \(M^{-1} = M^{-1/2} M^{-1/2}\). It follows that

$$\begin{aligned} \Vert \textbf{x}\Vert _M^2 = \textbf{x}^\top M \textbf{x} = (M^{1/2} \textbf{x})^\top M^{1/2} \textbf{x} = \Vert M^{1/2} \textbf{x}\Vert ^2, \end{aligned}$$

and

$$\begin{aligned} \Vert \textbf{x}\Vert ^2 = \textbf{x}^\top \textbf{x} = (M^{-1/2} \textbf{x})^\top M M^{-1/2} \textbf{x} = \Vert M^{-1/2} \textbf{x}\Vert _M^2. \end{aligned}$$
(36)

Therefore,

$$\begin{aligned} \Vert f(\textbf{x}) - f(\textbf{y})\Vert _M&= \Vert M^{1/2} (f(\textbf{x}) - f(\textbf{y})) \Vert \le \Vert M^{1/2} \Vert \, \Vert f(\textbf{x}) - f(\textbf{y}) \Vert \\&\le c_f\, \Vert M^{1/2} \Vert \, \Vert \textbf{x} - \textbf{y} \Vert \le c_f\, \Vert M^{1/2} \Vert \, \Vert M^{-1/2}\Vert _M \Vert \textbf{x} - \textbf{y}\Vert _M. \end{aligned}$$

The constant \(m_f = c_f \,\Vert M^{1/2} \Vert \, \Vert M^{-1/2}\Vert _M \ge 0\). \(\square \)

Under the assumptions that step length \(\alpha _k\) satisfies the Wolfe conditions (22) with \(0<c_2<\frac{1}{2}\), and that \(\nabla E_A\) is Lipschitz continuous, the \(M^{-1}\)-norm of the gradient vector is constrained by the modified Zoutendijk’s condition stated in the following lemma.

Lemma 5

(modified Zoutendijk’s condition) Suppose the step size \(\alpha _k\) satisfies the strong Wolfe conditions (22) with \(0<c_2<\frac{1}{2}\). Given a matrix M with \(M^{-1}\) being symmetric positive definite. Then, the vector \(\textbf{p}^{(k)}\) in (19) satisfies

$$\begin{aligned} \sum _{k=0}^{\infty } \cos ^2 \theta _{M}^{(k)} \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert _{M^{-1}}^2 < \infty , \end{aligned}$$
(37a)

where \(\cos \theta ^{(k)}_M\) is defined as

$$\begin{aligned} \cos \theta _{M}^{(k)} = -\frac{\nabla {E}_A(\widehat{\textbf{f}}^{(k)})^\top \textbf{p}^{(k)}}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert _{M^{-1}} \Vert \textbf{p}^{(k)} \Vert _{M^{-1}}}. \end{aligned}$$
(37b)

Proof

Since the step size \(\alpha _k\) satisfies (22), by Corollary 2, \(\textbf{p}^{(k)}\) is a descent direction at \(\widehat{\textbf{f}}^{(k)}\) so that (22b) can be written as

$$\begin{aligned} \nabla {E}_A(\widehat{\textbf{f}}^{(k+1)})^{\top } \textbf{p}^{(k)} \ge c_2 \nabla {E}_A(\widehat{\textbf{f}}^{(k)})^{\top } \textbf{p}^{(k)}. \end{aligned}$$
(38)

By subtracting \(\nabla {E}_A(\widehat{\textbf{f}}^{(k)})^{\top } \textbf{p}^{(k)}\) in both sides of (38), we obtain

$$\begin{aligned} \big (\nabla {E}_A(\widehat{\textbf{f}}^{(k+1)}) - \nabla {E}_A(\widehat{\textbf{f}}^{(k)})\big )^{\top } \textbf{p}^{(k)} \ge (c_2-1) \nabla {E}_A(\widehat{\textbf{f}}^{(k)})^{\top } \textbf{p}^{(k)}. \end{aligned}$$

Since \(\nabla E_A\) is Lipschitz continuous, by applying Lemma 4 and (36), we have

$$\begin{aligned} (c_2-1) \nabla {E}_A(\widehat{\textbf{f}}^{(k)})^{\top } \textbf{p}^{(k)}&\le \big ( \nabla {E}_A(\widehat{\textbf{f}}^{(k+1)}) - \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \big )^{\top } \textbf{p}^{(k)} \\&\le \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k+1)}) - \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert \Vert \textbf{p}^{(k)}\Vert \\&\le c_E \, \Vert \widehat{\textbf{f}}^{(k+1)} - \widehat{\textbf{f}}^{(k)} \Vert \Vert \textbf{p}^{(k)}\Vert \\&= c_E \, \Vert M^{1/2} (\widehat{\textbf{f}}^{(k+1)} - \widehat{\textbf{f}}^{(k)}) \Vert _{M^{-1}} \Vert M^{1/2} \textbf{p}^{(k)}\Vert _{M^{-1}} \\&\le c_E \, \Vert M^{1/2}\Vert _{M^{-1}}^2 \Vert \widehat{\textbf{f}}^{(k+1)} - \widehat{\textbf{f}}^{(k)} \Vert _{M^{-1}} \Vert \textbf{p}^{(k)}\Vert _{M^{-1}} \\&= c_E \, \Vert M^{1/2}\Vert _{M^{-1}}^2 \alpha _k \Vert \textbf{p}^{(k)}\Vert _{M^{-1}}^2. \end{aligned}$$

As a result,

$$\begin{aligned} \alpha _k&\ge \frac{c_2-1}{c_E \, \Vert M^{1/2}\Vert _{M^{-1}}^2} \frac{\nabla {E}_A(\widehat{\textbf{f}}^{(k)})^{\top } \textbf{p}^{(k)}}{\Vert \textbf{p}^{(k)}\Vert ^2_{M^{-1}}}. \end{aligned}$$

By substituting \(\alpha _k\) into (22a), we obtain

$$\begin{aligned} {E}_A(\widehat{\textbf{f}}^{(k+1)})&\le {E}_A(\widehat{\textbf{f}}^{(k)}) - \frac{c (\nabla {E}_A(\widehat{\textbf{f}}^{(k)})^{\top } \textbf{p}^{(k)})^2}{\Vert \textbf{p}^{(k)}\Vert ^2_{M^{-1}}} \end{aligned}$$
(39)
$$\begin{aligned}&= {E}_A(\widehat{{\textbf {f}}}^{(k)}) - c \cos ^2\theta _M^{(k)} \Vert \nabla {E}_A(\widehat{{\textbf {f}}}^{(k)})\Vert _{M^{-1}}^2, \end{aligned}$$
(40)

where \(c=\frac{c_1(1-c_2)}{c_E \, \Vert M^{1/2}\Vert _{M^{-1}}^2}\) and \(\cos \theta _M^{(k)}\) is defined as (37b). The recursive inequality (40) implies

$$\begin{aligned} \begin{aligned} {E}_A(\widehat{{\textbf {f}}}^{(k+1)}) \le {E}_A(\widehat{{\textbf {f}}}^{(0)}) - c \sum _{j=0}^k \cos ^2\theta _M^{(j)} \Vert \nabla {E}_A(\widehat{{\textbf {f}}}^{(j)})\Vert _{M^{-1}}^2. \end{aligned} \end{aligned}$$

In other words,

$$\begin{aligned} \sum _{j = 0}^{k} \cos ^2 \theta _{M}^{(j)} \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(j)}) \Vert _{M^{-1}}^2 = \frac{1}{c}\big ( {E}_A(\widehat{\textbf{f}}^{(0)}) - {E}_A(\widehat{\textbf{f}}^{(k+1)}) \big ). \end{aligned}$$
(41)

Noting that \({E}_A(\widehat{\textbf{f}})\) is bounded below, which implies \({E}_A(\widehat{\textbf{f}}^{(0)}) - {E}_A(\widehat{\textbf{f}}^{(k+1)})\) is bounded above. Therefore, by taking the limit of (41), we obtain (37) as desired. \(\square \)

Lemma 5 implies that \(\cos ^2 \theta _M^{(k)} \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert _{M^{-1}}^2\) tends to zero as k tends to infinity. Then, \(\nabla E_A(\widehat{\textbf{f}}^{(k)})\) would tend to \(\textbf{0}\), provided that \(\cos \theta _M^{(k)} = 1\). In the case of the nonlinear preconditioned CG method, \(\textbf{p}^{(k)}\) being a descent direction implies \(\theta _M^{(k)} < \frac{\pi }{2}\) and hence \(\cos \theta _M^{(k)} > 0\). However, it is still possible that \(\cos \theta _M^{(k)}\) approaches zero, and thus that \(\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert _{M^{-1}}\) may not converge to zero. Fortunately, we can apply the left inequality of (32) in Lemma 2 to further extend the result of Lemma 5 and thus establish a global convergence theorem for the nonlinear preconditioned CG method as follows.

Theorem 2

Suppose the step size \(\alpha _k\) satisfies the strong Wolfe conditions (22) with \(0<c_1<c_2<\frac{1}{2}\). Then,

$$\begin{aligned} \liminf _{k \rightarrow \infty }{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert _{M^{-1}} } = 0, \end{aligned}$$
(42)

provided that \(M^{-1}\) is a symmetric positive definite matrix.

Proof

We prove (42) by contradiction. Assume on the contrary that

$$\begin{aligned} \liminf _{k\rightarrow \infty }{\Vert \nabla {E}_A (\widehat{\textbf{f}}^{(k)}) \Vert _{M^{-1}}} \ne 0, \end{aligned}$$

i.e., there exist \(N\in \mathbb {N}\) and \(\gamma > 0\) such that

$$\begin{aligned} \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert _{M^{-1}} \ge \gamma , \end{aligned}$$
(43)

for every \(k>N\). Let \(\theta _M^{(k)}\) be defined as (37b). Then, by Lemma 2 together with (37b), we have

$$\begin{aligned} -\frac{1}{1-c_2} \le -\cos \theta _M^{(k)} \frac{\Vert \textbf{p}^{(k)} \Vert _{M^{-1}}}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert _{M^{-1}}} \le \frac{2c_2 - 1}{1 - c_2}. \end{aligned}$$

Equivalently,

$$\begin{aligned} \frac{1-2c_2}{1-c_2} \frac{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert _{M^{-1}}}{\Vert \textbf{p}^{(k)} \Vert _{M^{-1}}} \le \cos \theta _k \le \frac{1}{1 - c_2} \frac{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert _{M^{-1}}}{\Vert \textbf{p}^{(k)} \Vert _{M^{-1}}}. \end{aligned}$$
(44)

By Lemma 5, we have

$$\begin{aligned} \sum _{k=0}^{\infty } \cos ^2\theta _M^{(k)} \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert ^2_{M^{-1}} < \infty . \end{aligned}$$
(45)

Hence, with (44) and (45), we obtain

$$\begin{aligned} \sum _{k=0}^{\infty } \frac{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert ^4_{M^{-1}}}{\Vert \textbf{p}^{(k)} \Vert ^2_{M^{-1}}} < \infty . \end{aligned}$$
(46)

By Lemma 2, we have

$$\begin{aligned} -\nabla {E}_A(\widehat{\textbf{f}}^{(k)})^{\top } \textbf{p}^{(k)} \le \frac{1}{1-c_2} \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert ^2_{M^{-1}}. \end{aligned}$$
(47)

Then, by (22b) and (47), we obtain

$$\begin{aligned} | \nabla {E}_A(\widehat{\textbf{f}}^{(k)})^{\top } \textbf{p}^{(k-1)} | \le -c_2 \nabla {E}_A(\widehat{\textbf{f}}^{(k-1)})^{\top } \textbf{p}^{(k-1)} \le \frac{c_2}{1-c_2} \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k-1)}) \Vert ^2_{M^{-1}}. \end{aligned}$$
(48)

Hence, by (48), we have

$$\begin{aligned}&\Vert \textbf{p}^{(k)} \Vert ^2_{M} \nonumber \\&= \Vert -M^{-1} \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) + \beta _k \textbf{p}^{(k-1)} \Vert ^2_{M} \nonumber \\&= \Vert M^{-1} \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert _{M}^2 - 2 \beta _k (M^{-1} \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) )^\top (M \textbf{p}^{(k-1)}) + \beta ^2_k \Vert \textbf{p}^{(k-1)}\Vert _{M}^2 \nonumber \\&\le \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert ^2_{M^{-1}} + 2\beta _k | \nabla {E}_A(\widehat{\textbf{f}}^{(k)})^{\top } \textbf{p}^{(k-1)} | + \beta ^2_k \Vert \textbf{p}^{(k-1)}\Vert _{M}^2 \nonumber \\&\le \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert ^2_{M^{-1}} + \frac{2c_2}{1-c_2} \beta _k \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k-1)}) \Vert ^2_{M^{-1}} + \beta ^2_k \Vert \textbf{p}^{(k-1)}\Vert _{M}^2 \nonumber \\&= \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert ^2_{M^{-1}} + \frac{2c_2}{1-c_2} \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert ^2_{M^{-1}} + \beta ^2_k \Vert \textbf{p}^{(k-1)}\Vert _{M}^2 \nonumber \\&= \Big (\frac{1+c_2}{1-c_2} \Big ) \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert ^2_{M^{-1}} + \beta ^2_k \Vert \textbf{p}^{(k-1)}\Vert _{M}^2. \end{aligned}$$
(49)

Let \(c_3 = (1+c_2) / (1-c_2)\). The recursive inequality (49) with \(\textbf{p}^{(0)} = M^{-1} \nabla {E}_A(\widehat{\textbf{f}}^{(0)})\) implies

$$\begin{aligned} \Vert \textbf{p}^{(k)} \Vert ^2_{M} \le c_3 \sum _{i=0}^k \Big (\prod _{j=i+1}^k \beta _j^2\Big ) \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(i)})\Vert _{M^{-1}}^2. \end{aligned}$$
(50)

Recall that \(\beta _k = \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert ^2_{M^{-1}} / \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k-1)}) \Vert ^2_{M^{-1}}\), the product

$$\begin{aligned} \prod _{j=i+1}^k \beta _j^2 = \frac{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert ^4_{M^{-1}}}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(i)}) \Vert ^4_{M^{-1}}}. \end{aligned}$$
(51)

By substituting (51) into (50), we obtain

$$\begin{aligned} \Vert \textbf{p}^{(k)} \Vert ^2_{M} \le c_3 \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert ^4_{M^{-1}} \sum _{i=0}^k \frac{1}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(i)}) \Vert ^2_{M^{-1}}}. \end{aligned}$$
(52)

In addition, by (43) and the inequality \(\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert ^2_{M^{-1}} \le \Vert \nabla {E}_A(\widehat{\textbf{f}}^{(j)}) \Vert ^2_{M^{-1}}\) for \(j \le k\), we have, for \(k>N\),

$$\begin{aligned} \sum _{i=0}^k \frac{1}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(i)}) \Vert ^2_{M^{-1}}} \le \sum _{i=0}^k \frac{1}{\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert ^2_{M^{-1}}} \le \frac{k}{\gamma ^2}. \end{aligned}$$
(53)

From Lemma 3, we know that \(\nabla {E}_A\) is Lipschitz continuous, so there exists \(\overline{\gamma }\) such that \(\Vert \nabla {E}_A(\widehat{\textbf{f}}^{(k)}) \Vert _{M^{-1}} \le \overline{\gamma }\) for all k. As a result, from (52) and (53), for \(k>N\),

$$\begin{aligned} \Vert \textbf{p}^{(k)} \Vert ^2_{M} \le \frac{c_3 \overline{\gamma }^4}{\gamma ^2} k. \end{aligned}$$

This implies that

$$\begin{aligned} \sum _{k=1}^{\infty } \frac{1}{\Vert \textbf{p}^{(k)} \Vert ^2_{M}} \ge \omega \sum _{k=1}^{\infty } \frac{1}{k}, \end{aligned}$$
(54)

for some \(\omega >0\). On the other hand, from (43) and (46), we have

$$\begin{aligned} \sum _{k=0}^{\infty } \frac{1}{\Vert \textbf{p}^{(k)} \Vert ^2_{M}} < \infty , \end{aligned}$$

which contradicts to (54). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SY., Yueh, MH. Convergent Authalic Energy Minimization for Disk Area-Preserving Parameterizations. J Sci Comput 100, 43 (2024). https://doi.org/10.1007/s10915-024-02594-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02594-2

Keywords

Mathematics Subject Classification

Navigation