Abstract
We address the numerical solution to multimarginal optimal transport (MMOT) with pairwise costs. MMOT, as a natural extension from the classical two-marginal optimal transport, has many important applications including image processing, density functional theory and machine learning, but lacks efficient and exact numerical methods. The popular entropy-regularized method may suffer numerical instability and blurring issues. Inspired by the back-and-forth method introduced by Jacobs and Léger, we investigate MMOT problems with pairwise costs. We show that such problems have a graphical representation and leverage this structure to develop a new computationally gradient ascent algorithm to solve the dual formulation of such MMOT problems. Our method produces accurate solutions which can be used for the regularization-free applications, including the computation of Wasserstein barycenters with high resolution imagery.
Similar content being viewed by others
Notes
We distinguish between the projection of measures and the canonical projection of measures. For example, given a probability measure P on the space \((X_1\times X_2)\times X_3\cdots \times X_m\), then the projection of measures \((\pi _1)_{\#}P=P_{1}\in \mathbb {P}(X_1), (\pi _2)_{\#}P=P_2\in \mathbb {P}(X_2)\), while the canonical projection of measures \(({\textbf {Proj}}_1)_{\#}P=P_{12}\in \mathbb {P}(X_1\times X_2), ({\textbf {Proj}}_2)_{\#}P=P_3\in \mathbb {P}(X_3)\). This will be used in Lemma 3.2.
To distinguish with the Legendre transform, we still denote the optimal solution to (2.3) by \((f_1,f_2)\).
References
Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43, 904–924 (2011). https://doi.org/10.1137/100805741
Altschuler, J., Boix-Adserà, E.: Hardness results for multimarginal optimal transport problems. Discrete Optim. 42, 100669 (2021). https://doi.org/10.1016/j.disopt.2021.100669
Altschuler, J., Boix-Adserà, E.: Polynomial-time algorithms for multimarginal optimal transport problems with structure. Math. Program. (2022). https://doi.org/10.1007/s10107-022-01868-7
Ambrosio, L., Brué, E., Semola, D.: Lectures on optimal transport, vol. 130 of Unitext. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72162-6. La Matematica per il 3+2
Ambrosio, L., Gigli, N.: A user’s guide to optimal transport, in Modelling and optimisation of flows on networks, vol. 2062 of Lecture Notes in Mathematics, pp. 1–155. Springer, New York (2013). https://doi.org/10.1007/978-3-642-32160-3_1
Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics, 2nd edn. ETH Zürich, Birkhäuser, Basel (2008)
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, PMLR, pp. 214–223 (2017)
Benamou, J., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000). https://doi.org/10.1007/s002110050002
Benamou, J., Carlier, G., Cuturi, M., Nenna, L., Peyré, G.: Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comput. 37, A1111–A1138 (2015). https://doi.org/10.1137/141000439
Benamou, J., Froese, B.D., Oberman, A.M.: Numerical solution of the optimal transportation problem using the Monge–Ampère equation. J. Comput. Phys. 260, 107–126 (2014). https://doi.org/10.1016/j.jcp.2013.12.015
Bernot, M., Caselles, V., Morel, J.-M.: The structure of branched transportation networks. Calc. Var. Partial Differ. Equ. 32, 279–317 (2008). https://doi.org/10.1007/s00526-007-0139-0
Brenier, Y.: The least action principle and the related concept of generalized flows for incompressible perfect fluids. J. Am. Math. Soc. 2, 225–255 (1989). https://doi.org/10.2307/1990977
Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44, 375–417 (1991). https://doi.org/10.1002/cpa.3160440402
Brenier, Y.: Generalized solutions and hydrostatic approximation of the Euler equations. Physica D 237, 1982–1988 (2008)
Carlier, G., Nazaret, B.: Optimal transportation for the determinant. ESAIM Control Optim. Calc. Var. 14, 678–698 (2008). https://doi.org/10.1051/cocv:2008006
Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: Advances in Neural Information Processing Systems, vol. 33, pp. 9912–9924 (2020)
Courty, N., Flamary, R., Habrard, A., Rakotomamonjy, A.: Joint distribution optimal transportation for domain adaptation. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, vol. 26 (2013)
Cuturi, M., Peyré, G.: Semidual regularized optimal transport. SIAM Rev. 60, 941–965 (2018). https://doi.org/10.1137/18M1208654
De, S., Bartók, A.P., Csányi, G., Ceriotti, M.: Comparing molecules and solids across structural and alchemical space. Phys. Chem. Chem. Phys. 18, 13754–13769 (2016). https://doi.org/10.1039/C6CP00415F
de Acosta, A.: Invariance principles in probability for triangular arrays of \(B\)-valued random vectors and some applications. Ann. Probab. 10, 346–373 (1982)
Dessein, A., Papadakis, N., Rouas, J.-L.: Regularized optimal transport and the rot mover’s distance. J. Mach. Learn. Res. 19, 590–642 (2018)
Di Marino, S., Gerolin, A., Nenna, L.: Optimal transportation theory with repulsive costs. In: Topological Optimization and Optimal Transport, vol. 17 of Radon Series on Computational and Applied Mathematics, De Gruyter, Berlin, pp. 204–256 (2017)
Elvander, F., Haasler, I., Jakobsson, A., Karlsson, J.: Multi-marginal optimal transport using partial information with applications in robust localization and sensor fusion. Signal Process. 171, 107474 (2020)
Fan, J., Haasler, I., Karlsson, J., Chen, Y.: On the complexity of the optimal transport problem with graph-structured cost. In: Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, PMLR, pp. 9147–9165 (2022). https://proceedings.mlr.press/v151/fan22a.html
Feydy, J., Séjourné, T., Vialard, F.-X., Amari, S., Trouvé, A., Peyré, G.: Interpolating between optimal transport and MMD using Sinkhorn divergences. In: The 22nd International Conference on Artificial Intelligence and Statistics, PMLR, pp. 2681–2690 (2019)
Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: POT: python optimal transport. J. Mach. Learn. Res. 22, 1–8 (2021)
Friesecke, G., Schulz, A.S., Vögler, D.: Genetic column generation: fast computation of high-dimensional multimarginal optimal transport problems. SIAM J. Sci. Comput. 44, A1632–A1654 (2022). https://doi.org/10.1137/21M140732X
Frogner, C., Zhang, C., Mobahi, H., Araya, M., Poggio, T.A.: Learning with a Wasserstein loss. In: Advances in Neural Information Processing Systems, vol. 28 (2015). https://proceedings.neurips.cc/paper/2015/file/a9eb812238f753132652ae09963a05e9-Paper.pdf
Gangbo, W.: An introduction to the mass transportation theory and its applications. In: UCLA Lecture Notes (2004). https://www.math.ucla.edu/~wgangbo/publications/notecmu.pdf
Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177, 113–161 (1996). https://doi.org/10.1007/BF02392620
Gangbo, W., Świȩch, A.: Optimal maps for the multidimensional Monge–Kantorovich problem. Commun. Pure Appl. Math. 51, 23–45 (1998). https://doi.org/10.1002/(SICI)1097-0312
Garcia Trillos, N., Jacobs, M., Kim, J.: The multimarginal optimal transport formulation of adversarial multiclass classification, arXiv:2204.12676 (2022)
Genevay, A., Peyré, G., Cuturi, M.: Learning generative models with Sinkhorn divergences. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp. 1608–1617 (2018)
Haasler, I., Ringh, A., Chen, Y., Karlsson, J.: Multimarginal optimal transport with a tree-structured cost and the Schrödinger bridge problem. SIAM J. Control. Optim. 59, 2428–2453 (2021). https://doi.org/10.1137/20M1320195
Haasler, I., Singh, R., Zhang, Q., Karlsson, J., Chen, Y.: Multi-marginal optimal transport and probabilistic graphical models. IEEE Trans. Inform. Theory 67, 4647–4668 (2021). https://doi.org/10.1109/tit.2021.3077465
Jacobs, M., Léger, F.: A fast approach to optimal transport: the back-and-forth method. Numer. Math. 146, 513–544 (2020). https://doi.org/10.1007/s00211-020-01154-8
Jacobs, M., Léger, F.: The back-and-forth method. https://github.com/Math-Jacobs/bfm (2021)
Kellerer, H.G.: Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67, 399–432 (1984). https://doi.org/10.1007/BF00532047
Khoo, Y., Lin, L., Lindsey, M., Ying, L.: Semidefinite relaxation of multimarginal optimal transport for strictly correlated electrons in second quantization. SIAM J. Sci. Comput. 42, B1462–B1489 (2020). https://doi.org/10.1137/20M1310977
Kitagawa, J., Mérigot, Q., Thibert, B.: Convergence of a Newton algorithm for semi-discrete optimal transport. J. Eur. Math. Soc. (JEMS) 21, 2603–2651 (2019). https://doi.org/10.4171/JEMS/889
Li, W., Ryu, E.K., Osher, S., Yin, W., Gangbo, W.: A parallel method for earth mover’s distance. J. Sci. Comput. 75, 182–197 (2018). https://doi.org/10.1007/s10915-017-0529-1
Lin, T., Ho, N., Cuturi, M., Jordan, M.I.: On the complexity of approximating multimarginal optimal transport. J. Mach. Learn. Res. 23, 1–43 (2022)
Lucet, Y.: Faster than the fast Legendre transform, the linear-time Legendre transform. Numer. Algorithms 16, 171–185 (1997)
Maddalena, F., Solimini, S., Morel, J.: A variational model of irrigation patterns. Interfaces Free Bound. 5, 391–415 (2003). https://doi.org/10.4171/IFB/85
Mérigot, Q., Mirebeau, J.: Minimal geodesics along volume-preserving maps, through semidiscrete optimal transport. SIAM J. Numer. Anal. 54, 3465–3492 (2016). https://doi.org/10.1137/15M1017235
Neufeld, A., Xiang, Q.: Numerical method for feasible and approximately optimal solutions of multi-marginal optimal transport beyond discrete measures, arXiv:2203.01633 (2022)
Papadakis, N., Peyré, G., Oudet, E.: Optimal transport with proximal splitting. SIAM J. Imaging Sci. 7, 212–238 (2014). https://doi.org/10.1137/130920058
Parno, M., Zhou, B.: MMOT2d. https://github.com/simda-muri/mmot (2022)
Parno, M.D., West, B.A., Song, A.J., Hodgdon, T.S., O’Connor, D.T.: Remote measurement of sea ice dynamics with regularized optimal transport. Geophys. Res. Lett. 46, 5341–5350 (2019). https://doi.org/10.1029/2019GL083037
Pass, B.: Uniqueness and Monge solutions in the multimarginal optimal transportation problem. SIAM J. Math. Anal. 43, 2758–2775 (2011). https://doi.org/10.1137/100804917
Pass, B.: Multi-marginal optimal transport: theory and applications. ESAIM Math. Model. Numer. Anal. 49, 1771–1790 (2015). https://doi.org/10.1051/m2an/2015020
Peletier, M., Röger, M.: Partial localization, lipid bilayers, and the elastica functional. Arch. Ration. Mech. Anal. 193, 475–537 (2009). https://doi.org/10.1007/s00205-008-0150-4
Santambrogio, F.: Optimal Transport for Applied Mathematicians, vol. 87 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser (2015). https://doi.org/10.1007/978-3-319-20828-2Calculus of variations, PDEs, and modeling
Saumier, L., Khouider, B., Agueh, M.: Optimal transport for particle image velocimetry: real data and postprocessing algorithms. SIAM J. Appl. Math. 75, 2495–2514 (2015). https://doi.org/10.1137/140988814
Schmitzer, B.: Stabilized sparse scaling algorithms for entropy regularized transport problems. SIAM J. Sci. Comput. 41, A1443–A1481 (2019). https://doi.org/10.1137/16M1106018
Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices. Pac. J. Math. 21, 343–348 (1967)
Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A., Du, T., Guibas, L.: Convolutional Wasserstein distances: efficient optimal transportation on geometric domains. ACM Trans. Graphics (ToG) 34, 1–11 (2015). https://doi.org/10.1145/2766963
Villani, C.: Topics in Optimal Transportation, vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2003). https://doi.org/10.1090/gsm/058
Xia, Q.: Optimal paths related to transport problems. Commun. Contemp. Math. 5, 251–279 (2003). https://doi.org/10.1142/S021919970300094X
Xia, Q., Zhou, B.: The existence of minimizers for an isoperimetric problem with Wasserstein penalty term in unbounded domains. Adv. Calc. Var. (2021). https://doi.org/10.1515/acv-2020-0083
Yang, Y., Engquist, B., Sun, J., Hamfeldt, B.F.: Application of optimal transport and the quadratic Wasserstein metric to full-waveform inversion. Geophysics 83, R43–R62 (2018). https://doi.org/10.1190/geo2016-0663.1
Acknowledgements
We would like to thank Anne Gelb, Yoonsang Lee, Doug Cochran, Xianfeng David Gu and James Ronan for many fruitful conversations. We would like thank anonymous referees for their careful reading and valuable suggestions. This work was funded in part by US Office of Naval Research MURI grant N00014-20-1-2595.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Funding: ONR MURI #N00014-20-1-2595.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhou, B., Parno, M. Efficient and Exact Multimarginal Optimal Transport with Pairwise Costs. J Sci Comput 100, 25 (2024). https://doi.org/10.1007/s10915-024-02572-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-024-02572-8