[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Uniquely Solvable, Positivity-Preserving and Unconditionally Energy Stable Numerical Scheme for the Functionalized Cahn-Hilliard Equation with Logarithmic Potential

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose and analyze a first-order in time, second order in space finite difference scheme for the functionalized Cahn-Hilliard (FCH) equation with a logarithmic Flory-Huggins potential. The semi-implicit numerical scheme is designed based on a suitable convex-concave decomposition of the FCH free energy. We prove unique solvability of the numerical algorithm and verify its unconditional energy stability without any restriction on the time step size. Thanks to the singular nature of the logarithmic part in the Flory-Huggins potential near the pure states \(\pm 1\), we establish the so-called positivity-preserving property for the phase function at a theoretic level. As a consequence, the numerical solutions will never reach the singular values \(\pm 1\) in the point-wise sense and the fully discrete scheme is well defined at each time step. Next, we present a detailed optimal rate convergence analysis and derive error estimates in \(l^{\infty }(0,T;L_h^2)\cap l^2(0,T;H^3_h)\) under a linear refinement requirement \(\varDelta t\le C_1 h\). To achieve the goal, a higher order asymptotic expansion (up to the second order temporal and spatial accuracy) based on the Fourier projection is utilized to control the discrete maximum norm of solutions to the numerical scheme. We show that if the exact solution to the continuous problem is strictly separated from the pure states \(\pm 1\), then the numerical solutions can be kept away from \(\pm 1\) by a positive distance that is uniform with respect to the size of the time step and the grid. Finally, a few numerical experiments are presented. Convergence test is performed to demonstrate the accuracy and robustness of the proposed numerical scheme. Pearling bifurcation, meandering instability and spinodal decomposition are observed in the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abels, H., Wilke, M.: Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. 67(11), 3176–3193 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Alikakos, N., Bates, P., Chen, X.F.: Convergence of the Cahn-Hilliard equation to the Hele-Shaw model. Arch. Ration. Mech. Anal. 128, 165–205 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)

    Google Scholar 

  4. Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7, 287–301 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

  6. Cahn, J.W., Taylor, J.E.: Surface motion by surface diffusion. Acta Metall. Mater. 42, 1045–1063 (1994)

    Google Scholar 

  7. Chen, F., Shen, J.: Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems. Commun. Comput. Phys. 13(5), 1189–1208 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Chen, W.B., Jing, J.Y., Wang, C., Wang, X.M., Wise, S.M.: A modified Crank-Nicolson numerical scheme for the Flory-Huggins Cahn-Hilliard model. Commun. Comput. Phys. 31(1), 60–93 (2022)

    MathSciNet  MATH  Google Scholar 

  9. Chen, W.B., Liu, Q., Shen, J.: Error estimates and blow-up analysis of a finite-element approximation for the parabolic-elliptic Keller-Segel system. Int. J. Numer. Anal. Mod. 19, 275–298 (2022)

  10. Chen, W.B., Wang, C., Wang, X.M., Wise, S.M.: Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential. J. Comput. Phys. X 3, 100031, 29 (2019)

  11. Chen, W.B., Wang, X.M., Yan, Y., Zhang, Z.Y.: A second order BDF numerical scheme with variable steps for the Cahn-Hilliard equation. SIAM J. Numer. Anal. 57(1), 495–525 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Cheng, K., Wang, C., Wise, S.M., Yuan, Z.: Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation. Discrete Cont. Dyn. Sys. Ser. S 13(8), 2211–2229 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Cherfils, L., Miranville, A., Zelik, S.: The Cahn-Hilliard equation with logarithmic potentials. Milan J. Math. 79(2), 561–596 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Christlieb, A., Jones, J., Promislow, K., Wetton, B., Willoughby, M.: High accuracy solutions to energy gradient flows from material science models. J. Comput. Phys. 257, 193–215 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Christlieb, A., Promislow, K., Tan, Z.Q., Wang, S.L., Wetton, B., Wise, S.M.: Benchmark computation of morphological complexity in the functionalized Cahn-Hilliard gradient flow. arXiv preprint, arXiv:2006.04784 (2022)

  16. Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numer. Math. 63(1), 39–65 (1992)

    MathSciNet  MATH  Google Scholar 

  17. Dai, S.B., Du, Q.: Weak solutions for the Cahn-Hilliard equation with degenerate mobility. Arch. Ration. Mech. Anal. 219, 1161–1184 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Dai, S.B., Liu, Q., Luong, T., Promislow, K.: On nonnegative solutions for the functionalized Cahn-Hilliard equation with degenerate mobility. Results Appl. Math. 12, Paper No. 100195, 13 pp (2021)

  19. Dai, S.B., Liu, Q., Promislow, K.: Weak solutions for the functionalized Cahn-Hilliard equation with degenerate mobility. Appl. Anal. 100, 1–16 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Dai, S.B., Promislow, K.: Geometric evolution of bilayers under the functionalized Cahn-Hilliard equation. Proc. Roy. Soc. A 469, 20120505, 20 pp (2013)

  21. Dai, S.B., Promislow, K.: Competitive geometric evolution of amphiphilic interfaces. SIAM J. Math. Anal. 47(1), 347–380 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Debussche, A., Dettori, L.: On the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. 24(10), 1491–1514 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Doelman, A., Hayrapetyan, G., Promislow, K., Wetton, B.: Meander and pearling of single-curvature bilayer interfaces in the functionalized Cahn-Hilliard equation. SIAM J. Math. Anal. 46(6), 3640–3677 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Doi, M.: Soft Matter Physics. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  25. Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving, energy stable and convergent numerical scheme for the Cahn-Hilliard equation with a Flory-Huggins-de Gennes energy. Commun. Math. Sci. 17(4), 921–939 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving second-order BDF scheme for the Cahn-Hilliard equation with variable interfacial parameters. Commun. Comput. Phys. 28(3), 967–998 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Du, Q., Liu, C., Ryham, R., Wang, X.: A phase field formulation of the Willmore problem. Nonlinearity 18(3), 1249–1267 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198(2), 450–468 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Duan, N., Cui, Y., Zhao, X.: A sixth-order phase-field equation with degenerate mobility. Bull. Malays. Math. Sci. Soc. 42, 79–103 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Elliott, C.M., Garcke, H.: On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27(2), 404–423 (1996)

    MathSciNet  MATH  Google Scholar 

  31. Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30(6), 1622–1663 (1993)

    MathSciNet  MATH  Google Scholar 

  32. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. MRS Online Proc. Libr. 529, 39–46 (1998)

    MathSciNet  Google Scholar 

  33. Feng, W., Guan, Z., Lowengrub, J., Wang, C., Wise, S.M., Chen, Y.: A uniquely solvable, energy stable numerical scheme for the functionalized Cahn-Hilliard equation and its convergence analysis. J. Sci. Comput. 76(3), 1938–1967 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Feng, W., Salgado, A.J., Wang, C., Wise, S.M.: Preconditioned steepest descent methods for some nonlinear elliptic equations involving \(p\)-Laplacian terms. J. Comput. Phys. 334, 45–67 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Feng, W., Wang, C., Wise, S.M., Zhang, Z.: A second-order energy stable backward differentiation formula method for the epitaxial thin film equation with slope selection. Numer. Methods Partial Differ. Equ. 34(6), 1975–2007 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Fu, Z.H., Yang, J.: Energy-decreasing exponential time differencing runge-kutta methods for phase-field models. J. Comput. Phys. 454, 110943 (2022)

    MathSciNet  MATH  Google Scholar 

  37. Gavish, N., Hayrapetyan, G., Promislow, K., Yang, L.: Curvature driven flow of bi-layer interfaces. Physica D 240(7), 675–693 (2011)

    MATH  Google Scholar 

  38. Giorgini, A., Grasselli, M., Miranville, A.: The Cahn-Hilliard-Oono equation with singular potential. Math. Models Methods Appl. Sci. 27(13), 2485–2510 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Giorgini, A., Grasselli, M., Wu, H.: The Cahn-Hilliard-Hele-Shaw system with singular potential. Ann. Inst. H. Poincaré Anal. Non Linéaire 35(4), 1079–1118 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Gompper, G., Schick, M.: Correlation between structural and interfacial properties of amphiphilic systems. Phys. Rev. Lett. 65(9), 1116–1119 (1990)

    Google Scholar 

  41. Guo, J., Wang, C., Wise, S.M., Yue, X.: An \(H^2\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation. Commun. Math. Sci. 14(2), 489–515 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Guo, R., Xu, Y., Xu, Z.: Local discontinuous Galerkin methods for the functionalized Cahn-Hilliard equation. J. Sci. Comput. 63(3), 913–937 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Hillert, M.: A solid-solution model for inhomogeneous systems. Acta Metall. 9, 525–539 (1961)

    Google Scholar 

  44. Hou, D.M., Qiao, Z.H.: A linear adaptive BDF2 scheme for phase field crystal equation. arXiv preprint, arXiv:2206.07625 (2022)

  45. Huang, J.Z., Yang, C., Wei, Y.: Parallel energy-stable solver for a coupled Allen-Cahn and Cahn-Hilliard system. SIAM J. Sci. Comput. 42(5), C294–C312 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Jain, S., Bates, F.S.: On the origins of morphological complexity in block copolymer surfactants. Science 300(5618), 460–464 (2003)

    Google Scholar 

  47. Jeong, D., Kim, J.: A practical numerical scheme for the ternary Cahn-Hilliard system with a logarithmic free energy. Phys. A 442, 510–522 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Jeong, D., Lee, S., Kim, J.: An efficient numerical method for evolving microstructures with strong elastic inhomogeneity. Modelling Simul. Mater. Sci. Eng. 23(4), Paper No. 045007 (2015)

  49. Jia, H., Li, Y., Feng, G., Li, K.: An efficient two-grid method for the Cahn-Hilliard equation with the concentration-dependent mobility and the logarithmic Flory-Huggins bulk potential. Appl. Math. Comput. 387, Paper No. 124548, 15 pp (2020)

  50. Jones, J.: Development of a fast and accurate time stepping scheme for the functionalized Cahn-Hilliard equation and application to a graphics processing unit. ProQuest LLC, Ann Arbor, MI (2013). Thesis (Ph.D.)–Michigan State University

  51. Kraitzman, N., Promislow, K.: An overview of network bifurcations in the functionalized Cahn-Hilliard free energy. In: Mathematics of energy and climate change, CIM Ser. Math. Sci., vol. 2, pp. 191–214. Springer, Cham (2015)

  52. Kraitzman, N., Promislow, K.: Pearling bifurcations in the strong functionalized Cahn-Hilliard free energy. SIAM J. Math. Anal. 50(3), 3395–3426 (2018)

    MathSciNet  MATH  Google Scholar 

  53. Kreiss, H.O., Oliger, J.: Stability of the Fourier method. SIAM J. Numer. Anal. 16(3), 421–433 (1979)

    MathSciNet  MATH  Google Scholar 

  54. Lee, A., Münch, A., Süli, E.: Sharp-interface limits of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Appl. Math. 76, 433–456 (2016)

    MathSciNet  MATH  Google Scholar 

  55. Li, D.: A regularization-free approach to the Cahn-Hilliard equation with logarithmic potentials. Discrete Contin. Dyn. Syst. 42(5), 2453–2460 (2022)

    MathSciNet  MATH  Google Scholar 

  56. Li, D., Tang, T.: Stability of the semi-implicit method for the Cahn-Hilliard equation with logarithmic potentials. Ann. Appl. Math. 37(1), 31–60 (2021)

    MathSciNet  MATH  Google Scholar 

  57. Li, X., Qiao, Z.H., Wang, C.: Convergence analysis for a stabilized linear semi-implicit numerical scheme for the nonlocal Cahn-Hilliard equation. Math. Comput. 90(327), 171–188 (2021)

    MathSciNet  MATH  Google Scholar 

  58. Li, X., Qiao, Z.H., Zhang, H.: An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation. Sci China Math 59(9), 1815–1834 (2016)

    MathSciNet  MATH  Google Scholar 

  59. Liu, C., Wang, C., Wang, Y.: A structure-preserving, operator splitting scheme for reaction-diffusion equations with detailed balance. J. Comput. Phys. 436, 110253 (2021)

    MathSciNet  MATH  Google Scholar 

  60. Liu, C., Wang, C., Wise, S.M., Yue, X., Zhou, S.: A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system. Math. Comput. 90(331), 2071–2106 (2021)

    MathSciNet  MATH  Google Scholar 

  61. Miranville, A.: Asymptotic behavior of a sixth-order Cahn-Hilliard system. Cent. Eur. J. Math. 12, 141–154 (2014)

    MathSciNet  MATH  Google Scholar 

  62. Miranville, A., Zelik, S.: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27(5), 545–582 (2004)

    MathSciNet  MATH  Google Scholar 

  63. Novick-Cohen, A.: The Cahn-Hilliard equation, Handb. Differ. Equ. Evolutionary Equations, vol. 4, pp. 201–228. Elsevier/North-Holland, Amsterdam (2008)

  64. Pego, R.L.: Front migration in the nonlinear Cahn-Hilliard equation. Proc. Roy. Soc. London A 422, 261–278 (1989)

    MathSciNet  MATH  Google Scholar 

  65. Pesce, C., Münch, A.: How do degenerate mobilities determine singularity formation in Cahn-Hilliard equations? Multiscale Model. Simul. 19, 1143–1166 (2021)

    MathSciNet  MATH  Google Scholar 

  66. Promislow, K., Wetton, B.: PEM fuel cells: a mathematical overview. SIAM J. Appl. Math. 70(2), 369–409 (2009)

    MathSciNet  MATH  Google Scholar 

  67. Promislow, K., Wu, Q.: Existence of pearled patterns in the planar functionalized Cahn-Hilliard equation. J. Differential Equations 259(7), 3298–3343 (2015)

    MathSciNet  MATH  Google Scholar 

  68. Promislow, K., Wu, Q.: Existence, bifurcation, and geometric evolution of quasi-bilayers in the multicomponent functionalized Cahn-Hilliard equation. J. Math. Biol. 75(2), 443–489 (2017)

    MathSciNet  MATH  Google Scholar 

  69. Promislow, K., Zhang, H.: Critical points of functionalized Lagrangians. Discrete Contin. Dyn. Syst. 33(4), 1231–1246 (2013)

    MathSciNet  MATH  Google Scholar 

  70. Qiao, Z.H., Zhang, Z.R., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33(3), 1395–1414 (2011)

    MathSciNet  MATH  Google Scholar 

  71. Schimperna, G., Pawłow, I.: On a class of Cahn-Hilliard models with nonlinear diffusion. SIAM J. Math. Anal. 45(1), 31–63 (2013)

    MathSciNet  MATH  Google Scholar 

  72. Schimperna, G., Wu, H.: On a class of sixth-order Cahn-Hilliard-type equations with logarithmic potential. SIAM J. Math. Anal. 52(5), 5155–5195 (2020)

    MathSciNet  MATH  Google Scholar 

  73. Simon, J.: Compact sets in the space \({L}^p(0,{T};{B})\). Ann. Mat. Pura Appl. 146(4), 65–96 (1987)

    MathSciNet  MATH  Google Scholar 

  74. Torabi, S., Lowengrub, J., Voigt, A., Wise, S.M.: A new phase-field model for strongly anisotropic systems. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465(2105), 1337–1359 (2009). With supplementary material available online

  75. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49(3), 945–969 (2011)

    MathSciNet  MATH  Google Scholar 

  76. Wang, L.D., Chen, W.B., Wang, C.: An energy-conserving second order numerical scheme for nonlinear hyperbolic equation with an exponential nonlinear term. J. Comput. Appl. Math. 280, 347–366 (2015)

    MathSciNet  MATH  Google Scholar 

  77. Wise, S.M.: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations. J. Sci. Comput. 44(1), 38–68 (2010)

    MathSciNet  MATH  Google Scholar 

  78. Wise, S.M., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226(1), 414–446 (2007)

    MathSciNet  MATH  Google Scholar 

  79. Wise, S.M., Wang, C., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47(3), 2269–2288 (2009)

    MathSciNet  MATH  Google Scholar 

  80. Won, Y.Y., Davis, H.T., Bates, F.S.: Molecular exchange in PEO-PB micelles in water. Macromolecules 36, 953–955 (2003)

    Google Scholar 

  81. Wu, H.: A review on the Cahn-Hilliard equation: classical results and recent advances in dynamic boundary conditions. Electron. Res. Arch. 30(8), 2788–2832 (2022)

    MathSciNet  MATH  Google Scholar 

  82. Yang, X., Zhao, J.: On linear and unconditionally energy stable algorithms for variable mobility Cahn-Hilliard type equation with logarithmic Flory-Huggins potential. Commun. Comput. Phys. 25(3), 703–728 (2019)

    MathSciNet  MATH  Google Scholar 

  83. Zhang, C., Ouyang, J.: Unconditionally energy stable second-order numerical schemes for the functionalized Cahn-Hilliard gradient flow equation based on the SAV approach. Comput. Math. Appl. 84, 16–38 (2021)

    MathSciNet  MATH  Google Scholar 

  84. Zhang, C., Ouyang, J., Wang, C., Wise, S.M.: Numerical comparison of modified-energy stable SAV-type schemes and classical BDF methods on benchmark problems for the functionalized Cahn-Hilliard equation. J. Comput. Phys. 423, 109772, 35 (2020)

  85. Zhang, C., Ouyang, J., Wang, X., Chai, Y., Ma, M.: Analysis of the energy stability for stabilized semi-implicit schemes of the functionalized Cahn-Hilliard mass-conserving gradient flow equation. J. Sci. Comput. 87(1), Paper No. 34, 25 (2021)

  86. Zhang, C., Ouyang, J., Wang, X., Li, S., Mao, J.: Highly accurate, linear, and unconditionally energy stable large time-stepping schemes for the functionalized Cahn-Hilliard gradient flow equation. J. Comput. Appl. Math. 392, Paper No. 113479, 23 pp (2021)

  87. Zhang, J., Wang, C., Wise, S.M., Zhang, Z.: Structure-preserving, energy stable numerical schemes for a liquid thin film coarsening model. SIAM J. Sci. Comput. 43(2), A1248–A1272 (2021)

    MathSciNet  MATH  Google Scholar 

  88. Zhang, Z.R., Ma, Y., Qiao, Z.H.: An adaptive time-stepping strategy for solving the phase field crystal model. J. Comput. Phys. 249, 204–215 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the valuable and insightful comments from the anonymous reviewers.

Funding

W. Chen was partially supported by NSFC 12241101 and NSFC 12071090. H. Wu was partially supported by NSFC 12071084 and the Shanghai Center for Mathematical Sciences at Fudan University.

Author information

Authors and Affiliations

Authors

Contributions

W. Chen and H. Wu are members of the Key Laboratory of Mathematics for Nonlinear Sciences (Fudan University), Ministry of Education of China.

Corresponding author

Correspondence to Hao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Jing, J. & Wu, H. A Uniquely Solvable, Positivity-Preserving and Unconditionally Energy Stable Numerical Scheme for the Functionalized Cahn-Hilliard Equation with Logarithmic Potential. J Sci Comput 96, 75 (2023). https://doi.org/10.1007/s10915-023-02296-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02296-1

Keywords

Mathematics Subject Classification

Navigation