[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Triangularized Orthogonalization-Free Method for Solving Extreme Eigenvalue Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A novel orthogonalization-free method together with two specific algorithms is proposed to address extreme eigenvalue problems. On top of gradient-based algorithms, the proposed algorithms modify the multicolumn gradient such that earlier columns are decoupled from later ones. Locally, both algorithms converge linearly with convergence rates depending on eigengaps. Momentum acceleration, exact linesearch, and column locking are incorporated to accelerate algorithms and reduce their computational costs. We demonstrate the efficiency of both algorithms on random matrices with different spectrum distributions and matrices from computational chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Banerjee, A.S., Lin, L., Hu, W., Yang, C., Pask, J.E.: Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations. J. Chem. Phys. 145(15), 154101 (2016)

    Article  Google Scholar 

  2. Berljafa, M., Wortmann, D., Di Napoli, E.: An optimized and scalable eigensolver for sequences of eigenvalue problems. Concurr. Comput. Pract. Exp. 27(4), 905–922 (2015)

    Article  Google Scholar 

  3. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60(2), 223–311 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brouder, C., Panati, G., Calandra, M., Mourougane, C., Marzari, N.: Exponential localization of Wannier functions in insulators. Phys. Rev. Lett. 98(4), 046402 (2007)

    Article  Google Scholar 

  5. Corsetti, F.: The orbital minimization method for electronic structure calculations with finite-range atomic basis sets. Comput. Phys. Commun. 185(3), 873–883 (2014)

    Article  Google Scholar 

  6. Dai, X., Wang, Q., Zhou, A.: Gradient flow based discretized Kohn-Sham density functional theory. arxiv:1907.06321 (2019a)

  7. Dai, X., Zhang, L., Zhou, A.: Adaptive step size strategy for orthogonality constrained line search methods. arxiv:1906.02883 (2019b)

  8. Davidson, E.R.: The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17(1), 87–94 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, B., Liu, X., Chen, X., Yuan, Y.X.: A new first-order algorithmic framework for optimization problems with orthogonality constraints. SIAM J. Optim. 28(1), 302–332 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, B., Liu, X., Yuan, Y.-X.: Parallelizable algorithms for optimization problems with orthogonality constraints. SIAM J. Sci. Comput. 41(3), A1949–A1983 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, W., Li, Y., Lu, B.: Global convergence of triangularized orthogonalization-free method for solving extreme eigenvalue problems. arxiv:2110.06212 (2021)

  12. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  13. Golub, G.H., Ye, Q.: An inverse free preconditioned krylov subspace method for symmetric generalized eigenvalue problems. SIAM J. Sci. Comput. 24(1), 312–334 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, W., Gallivan, K.A., Absil, P.-A.: A Broyden class of quasi-Newton methods for Riemannian optimization. SIAM J. Optim. 25(3), 1660–1685 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kalkreuter, T., Simma, H.: An accelerated conjugate gradient algorithm to compute low-lying eigenvalues-a study for the dirac operator in su (2) lattice qcd. Comput. Phys. Commun. 93(1), 33–47 (1996)

    Article  MATH  Google Scholar 

  16. Knowles, P.J., Handy, N.C.: A new determinant-based full configuration interaction method. Chem. Phys. Lett. 111(4–5), 315–321 (1984)

    Article  Google Scholar 

  17. Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, J.D., Panageas, I., Piliouras, G., Simchowitz, M., Jordan, M.I., Recht, B.: First-order methods almost always avoid strict saddle points. Math. Program. 176(1–2), 311–337 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lei, Q., Zhong, K., Dhillon, I.S.: Coordinate-wise power method. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, pp. 2064–2072. Curran Associates Inc, New York (2016)

    Google Scholar 

  20. Levitt, A., Torrent, M.: Parallel eigensolvers in plane-wave density functional theory. Comput. Phys. Commun. 187, 98–105 (2015)

    Article  MathSciNet  Google Scholar 

  21. Li, R.-C.: Rayleigh quotient based optimization methods for eigenvalue problems. In Matrix Functions and Matrix Equations, World Scientific, pp 76–108 (2015)

  22. Li, Y., Lu, J.: Bold diagrammatic Monte Carlo in the lens of stochastic iterative methods. Trans. Math. Appl. 3(1), 1–17 (2019)

    MATH  Google Scholar 

  23. Li, Y., Lu, J.: Optimal orbital selection for full configuration interaction (OptOrbFCI): pursuing basis set limit under budget. arxiv:2004.04205 (2020)

  24. Li, Y., Lu, J., Wang, Z.: Coordinatewise descent methods for leading eigenvalue problem. SIAM J. Sci. Comput. 41(4), A2681–A2716 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Y., Yang, H.: Spectrum slicing for sparse Hermitian definite matrices based on Zolotarev’s functions. arxiv:1701.08935 (2017)

  26. Liu, W.: An algorithm for solving eigenvectors based on unconstrained optimization problem. Master’s thesis, Fudan University (2021)

  27. Liu, X., Wen, Z., Zhang, Y.: An efficient Gauss-Newton algorithm for symmetric low-rank product matrix approximations. SIAM J. Optim. 25(3), 1571–1608 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lu, J., Thicke, K.: Orbital minimization method with l1 regularization. J. Comput. Phys. 336, 87–103 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lu, J., Yang, H.: Preconditioning orbital minimization method for planewave discretization. Multiscale Model. Simul. 15(1), 254–273 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mauri, F., Galli, G., Car, R.: Orbital formulation for electronic-structure calculations with linear system-size scaling. Phys. Rev. B 47(15), 9973–9976 (1993)

    Article  Google Scholar 

  31. Ordejón, P., Drabold, D.A., Grumbach, M.P., Martin, R.M.: Unconstrained minimization approach for electronic computations that scales linearly with system size. Phys. Rev. B 48(19), 14646–14649 (1993)

    Article  Google Scholar 

  32. Ovtchinnikov, E.E.: Computing several eigenpairs of Hermitian problems by conjugate gradient iterations. J. Comput. Phys. 227(22), 9477–9497 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Peter Tang, P.T., Polizzi, E.: FEAST as a subspace iteration eigensolver accelerated by approximate spectral projection. SIAM J. Matrix Anal. Appl. 35(2), 354–390 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Polak, E., Ribiere, G.: Note sur la convergence de méthodes de directions conjuguées. ESAIM Math. Modell. Numer. Anal Modél. Math. Anal. Numér. 3(R1), 35–43 (1969)

    MATH  Google Scholar 

  35. Quillen, P., Ye, Q.: A block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems. J. Comput. Appl. Math. 233(5), 1298–1313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saad, Y., Chelikowsky, J.R., Shontz, S.M.: Numerical methods for electronic structure calculations of materials. SIAM Rev. 52(1), 3–54 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Stubbs, K.D., Watson, A.B., Lu, J.: Existence and computation of generalized Wannier functions for non-periodic systems in two dimensions and higher. arxiv:2003.06676 (2020)

  38. Vecharynski, E., Yang, C., Pask, J.E.: A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix. J. Comput. Phys. 290, 73–89 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, Z., Li, Y., Lu, J.: Coordinate descent full configuration interaction. J. Chem. Theory Comput. 15(6), 3558–3569 (2019)

    Article  Google Scholar 

  40. Wen, Z., Yang, C., Liu, X., Zhang, Y.: Trace-penalty minimization for large-scale eigenspace computation. J. Sci. Comput. 66(3), 1175–1203 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. 142(1–2), 397–434 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yu, V. W.-Z., Campos, C., Dawson, W., García, A., Havu, V., Hourahine, B., Huhn, W. P., Jacquelin, M., Jia, W., Keçeli, M., Laasner, R., Li, Y., Lin, L., Lu, J., Moussa, J., Roman, J. E., Vázquez-Mayagoitia, Á., Yang, C., Blum, V.: ELSI – an open infrastructure for electronic structure solvers. arxiv:1912.13403 (2019)

  43. Yu, V.W.-Z., Corsetti, F., García, A., Huhn, W.P., Jacquelin, M., Jia, W., Lange, B., Lin, L., Lu, J., Mi, W., Seifitokaldani, A., Vázquez-Mayagoitia, Á., Yang, C., Yang, H., Blum, V.: ELSI: a unified software interface for Kohn-Sham electronic structure solvers. Comput. Phys. Commun. 222, 267–285 (2018)

    Article  Google Scholar 

  44. Zhang, X., Zhu, J., Wen, Z., Zhou, A.: Gradient type optimization methods for electronic structure calculations. SIAM J. Sci. Comput. 36(3), C265–C289 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhou, Y., Saad, Y., Tiago, M.L., Chelikowsky, J.R.: Self-consistent-field calculations using Chebyshev-filtered subspace iteration. J. Comput. Phys. 219(1), 172–184 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Jianfeng Lu and Zhe Wang for helpful discussions.

Funding

W. Gao was partially supported by National Key R &D Program of China under Grant No. 2020YFA0711900, 2020YFA0711902 and National Natural Science Foundation of China under Grant No. 71991471, U1811461. Y. Li and B. Lu were partially supported by National Natural Science Foundation of China under Grant No. 12271109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingzhou Li.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of Theorem 4

A Proof of Theorem 4

Proof of Theorem 4

All fixed points of (16) satisfy \(g_2(X) = 0\). We first analyze the fixed points for a single column case and then complete the proof by induction. Notations used in this proof are the same as those in the proof of Theorem 3.

We denote the single column X as x. Obviously, when \(x = 0\), we have \(g_2(x) = 0\). Now, consider the nontrivial case \(x \ne 0\). The equality \(g_2(x) = 0\) can be expanded as,

$$\begin{aligned} \left( \left( 2 - x^\top x\right) A - x^\top A x I \right) x = 0. \end{aligned}$$
(45)

According to (45), for nonzero x, the matrix \(B = \left( 2 - x^\top x\right) A - x^\top A x I\) must has a zero eigenvalue and x lies in its corresponding eigenspace. When \(x^\top x = 2\), the matrix \(B = x^\top A x I\) does not have zero eigenvalue due to the negativity assumption on A. Hence x is parallel to one of A’s eigenvector, i.e., \(Ax = \lambda x\). Substituting this into (45), we obtain,

$$\begin{aligned} 2 (1 - x^\top x) \lambda x = 0. \end{aligned}$$
(46)

Since \(\lambda < 0\) and \(x \ne 0\), we have \(x^\top x = 1\). Hence we conclude that for \(g_2(x) = 0\), x is either a zero vector or an eigenvector of A.

Now we consider multicolumn case. The first column of \(g_2(X) = 0\) is the same as (45). Hence \(X_1 = U P_1 S_1\).

Assume the first i columns of X obey \(X_i = U P_i S_i\). Then the \((i+1)\)-th column of \(g_2(X) = 0\) is

$$\begin{aligned} 2A x_{i+1} - Ax_{i+1} x_{i+1}^\top x_{i+1} - x_{i+1} x_{i+1}^\top A x_{i+1} - AX_i X_i^\top x_{i+1} - X_i X_i^\top Ax_{i+1} = 0. \end{aligned}$$
(47)

Obviously, if \(x_{i+1} = 0\), then (47) holds. When \(x_{i+1} \ne 0\), we left multiply (47) with \(X_i^\top \), adopt the commuting property of diagonal matrices, and obtain,

$$\begin{aligned} \begin{aligned} 0 =&S_i P_i^\top \left( 2\Lambda - x_{i+1}^\top x_{i+1} \Lambda - x_{i+1}^\top A x_{i+1} I - \Lambda P_i P_i^\top - \Lambda \right) U^\top x_{i+1} \\ =&- S_i P_i^\top \left( x_{i+1}^\top x_{i+1} \Lambda + x_{i+1}^\top A x_{i+1} I \right) U^\top x_{i+1} \\ \end{aligned} \end{aligned}$$
(48)

where the second equality adopts the fact that \(P_i^\top \Lambda P_i P_i^\top = P_i^\top \Lambda \). Due to the negativity of A, we notice that \(x_{i+1}^\top x_{i+1} \Lambda + x_{i+1}^\top A x_{i+1} I\) is a diagonal matrix with strictly negative diagonal entries. Hence the equality (48) is equivalent to

$$\begin{aligned} S_i P_i^\top U^\top x_{i+1} = 0. \end{aligned}$$
(49)

As long as (49) holds, we have \(X_i^\top x_{i+1} = 0\) and \(X_i^\top A x_{i+1} = 0\). Therefore, solving (47) can be addressed via solving

$$\begin{aligned} 2A x_{i+1} - Ax_{i+1} x_{i+1}^\top x_{i+1} - x_{i+1} x_{i+1}^\top A x_{i+1} = 0. \end{aligned}$$
(50)

Hence \(x_{i+1}\) satisfies (49). Combining the solution of the single column case (45) and the constraint (49), we conclude that \(X_{i+1}\) is of the form \(U P_{i+1} S_{i+1}\).

The stabilities of fixed points should also be analyzed through the spectrum properties of their Jacobian matrices. The Jacobian matrix \(\,\mathrm {D}g_2(X)\), again, can be written as a p-by-p block matrix. And using the similar argument as in the proof of Theorem 3, \(\,\mathrm {D}g_2(X) = \,\mathrm {D}G\) is a block upper triangular matrix whose spectrum is determined by the spectrum of its diagonal blocks. Through a multivariable calculus, we obtain the expression for \(J_{ii}\) as,

$$\begin{aligned} J_{ii} = 2A - A X_i X_i^\top - X_i X_i^\top A - A x_i x_i^\top - x_i^\top x_i A - x_i^\top A x_i I - x_i x_i^\top A. \end{aligned}$$
(51)

We first show the stability of the fixed points of form \(X = U_p D\). Substituting these points into (51), we have,

$$\begin{aligned} J_{ii} = A - 2 U_i \Lambda _i U_i^\top - 2 \lambda _i u_i u_i^\top - \lambda _i I. \end{aligned}$$
(52)

Since \(\lambda _i\) is smaller than all eigenvalues of \(A - U_i \Lambda _i U_i^\top \), \(A - U_i \Lambda _i U_i^\top - \lambda _i I\) is strictly positive definite. The rest part of (51) is, obviously, positive definite. Hence \(J_{ii}\) is strictly positive definite for all \(i = 1, 2, \dots , p\) and fixed points of the form \(X = U_p D\) are stable fixed points.

Next we show the rest fixed points are not stable. For a fixed point X, we denote the first index s such that \(x_s^\top u_s = 0\). Then we estimate \(u_s^\top J_{ss} u_s\) as,

$$\begin{aligned} u_s^\top J_{ii} u_s = 2\lambda _s - x_s^\top x_s \lambda _s - x_s^\top A x_s < 0, \end{aligned}$$
(53)

since \(x_s^\top x_s \le 1\) and A is negative definite. Therefore, the rest fixed points are not stable. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Li, Y. & Lu, B. Triangularized Orthogonalization-Free Method for Solving Extreme Eigenvalue Problems. J Sci Comput 93, 63 (2022). https://doi.org/10.1007/s10915-022-02025-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02025-0

Keywords

Mathematics Subject Classification (2020)

Navigation