Abstract
A new variant of the IPDG method is presented, involving carefully constructed weighted averages of the gradient of the approximate solution. The method is shown to be robust even for the most extreme simultaneous local mesh, polynomial degree and diffusion coefficient variation scenarios, without resulting into unreasonably large penalization. The new IPDG method, henceforth termed as robust IPDG (RIPDG), offers typically significantly better error behaviour and conditioning than the standard IPDG method when applied to scenarios with strong mesh/polynomial degree/diffusion local variation, especially when the underlying approximation space does not contain a sufficiently rich conforming subspace. The latter is of particular importance in the context of IPDG methods on polygonal/polyhedral meshes. On the other hand, when using uniform meshes, constant polynomial degree for problems with constant diffusion coefficients the RIPDG method is identical to the classical IPDG. Numerical experiments indicate the favourable performance of the new RIPDG method over the classical version in terms of conditioning and error.
Similar content being viewed by others
References
Annavarapu, C., Hautefeuille, M., Dolbow, J.E.: A robust Nitsche’s formulation for interface problems. Comput. Methods Appl. Mech. Engrg. 225(228), 44–54 (2012)
Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)
Babuška, I.: The finite element method with penalty. Math. Comp. 27, 221–228 (1973)
Baker, G.: Finite element methods for elliptic equations using nonconforming elements. Math. Comp. 31, 45–59 (1977)
Bassi, F., Botti, L., Colombo, A., Di Pietro, D., Tesini, P.: On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231, 45–65 (2012)
Burman, E., Zunino, P.: A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 44, 1612–1638 (2006)
Cangiani, A., Dong, Z., Georgoulis, E., Houston, P.: \(hp\)–Version discontinuous Galerkin methods for advection–diffusion–reaction problems on polytopic meshes. ESAIM: M2AN 50, 699–725 (2016)
Cangiani, A., Dong, Z., Georgoulis, E.H.: \(hp\)-version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes. SIAM J. Sci. Comput. 39, A1251–A1279 (2017)
Cangiani, A., Dong, Z., Georgoulis, E.H.: \(hp\)-version discontinuous Galerkin methods on essentially arbitrarily-shaped elements. Math. Comp. 91, 1–35 (2022)
Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: \(hp\)-version discontinuous Galerkin methods on polygonal and polyhedral meshes. SpringerBriefs in Mathematics, Springer, Cham (2017)
Cangiani, A., Georgoulis, E., Houston, P.: \(hp\)-Version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24, 2009–2041 (2014)
Chernov, A.: Optimal convergence estimates for the trace of the polynomial \(L^{2}\)-projection operator on a simplex. Math. Comp. 81, 765–787 (2012)
Dong, Z.: Discontinuous galerkin methods for the biharmonic problem on polygonal and polyhedral meshes. Int. J. Numer. Anal. Model. 16, 825–846 (2019)
Dong, Z.: On the exponent of exponential convergence of \(p\)-version FEM spaces. Adv. Comput. Math. 45, 757–785 (2019)
Dryja, M.: On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients, vol. 3, pp. 76–85 (2003). Dedicated to Raytcho Lazarov
Ern, A., Stephansen, A.F., Zunino, P.: A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29, 235–256 (2009)
Georgoulis, E.: Discontinuous Galerkin methods on shape-regular and anisotropic meshes, D.Phil. Thesis, University of Oxford (2003)
Georgoulis, E., Lasis, A.: A note on the design of \(hp\)-version interior penalty discontinuous Galerkin finite element methods for degenerate problems. IMA J. Numer. Anal. 26, 381–390 (2006)
Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comp. 79, 2169–2189 (2010)
Gustafsson, T., Stenberg, R., Videman, J.: On Nitsche’s method for elastic contact problems. SIAM J. Sci. Comput. 42, B425–B446 (2020)
Houston, P., Schwab, C., Süli, E.: Discontinuous \(hp\)-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39, 2133–2163 (2002)
Melenk, J., Schwab, C.: An \(hp\)-finite element method for convection-diffusion problems in one dimension. IMA J. Numer. Anal. 19, 425–453 (1999)
Nitsche, J.: Über ein variationsprinzip zur lösung von dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind. In: Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, vol. 36, pp. 9–15 1971 (Springer)
Oleinik, O., Radkevič, E.: Second Order Equations with Nonnegative Characteristic Form. American Mathematical Society Providence (1973)
Rivière, B., Wheeler, M., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39, 902–931 (2001)
Veeser, A., Zanotti, P.: Quasi-optimal nonconforming methods for symmetric elliptic problems. III—Discontinuous Galerkin and other interior penalty methods. SIAM J. Numer. Anal. 56, 2871–2894 (2018)
Warburton, T., Hesthaven, J.S.: On the constants in \(hp\)-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Engrg. 192, 2765–2773 (2003)
Wheeler, M.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dong, Z., Georgoulis, E.H. Robust Interior Penalty Discontinuous Galerkin Methods. J Sci Comput 92, 57 (2022). https://doi.org/10.1007/s10915-022-01916-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-022-01916-6