[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Convergence Analysis of a LDG Method for Time–Space Tempered Fractional Diffusion Equations with Weakly Singular Solutions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A class of time–space tempered fractional diffusion equations is considered in this paper. The solution of these problems generally have a weak singularity near the initial time \(t = 0\). To solve the time–space tempered fractional diffusion equations, a fully discrete local discontinuous Galerkin (LDG) method is proposed. The basic idea is to apply LDG method in the space on uniform meshes and a finite difference method in the time on graded meshes to deal with the weak singularity at initial time \(t = 0\). The discrete fractional Grönwall inequality is used to analyze the stability and convergence of the method. Numerical results show that the proposed method for time–space tempered fractional diffusion equation is accurate and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this paper.

References

  1. Ahmadinia, M., Safari, Z.: Convergence analysis of a LDG method for tempered fractional convection-diffusion equations. ESAIM Math. Model. Numer. Anal. 54(1), 59–78 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmadinia, M., Safari, Z., Fouladi, S.: Analysis of LDG method for time–space fractional convection–diffusion equations. BIT Numer. Math. 58, 533–554 (2018)

    Article  MATH  Google Scholar 

  3. Baeumer, B., Benson, D.A., Meerschaert, M.M., Wheatcraft, S.W.: Subordinated advection–dispersion equation for contaminant transport. Water Resour. Res. 37(6), 1543–1550 (2001)

    Article  Google Scholar 

  4. Baeumer, B., Meerschaert, M.M.: Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233(10), 2438–2448 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, J., Xiao, A., Bu, W.: Finite difference/finite element method for tempered time fractional advection–dispersion equation with fast evaluation of Caputo derivative. J. Sci. Comput. 83, 1–29 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cartea, Á., del Castillo-Negrete, D.: Fluid limit of the continuous-time random walk with general lévy jump distribution functions. Phys. Rev. E (3) 76(4), 041105 (2007)

    Article  Google Scholar 

  7. Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the \(hp\)-version of the local discontinuous Galerkin method for convection–diffusion problems. Math. Comput. 71(238), 455–478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Castillo, P., Gómez, S.: On the convergence of the local discontinuous Galerkin method applied to a stationary one dimensional fractional diffusion problem. J. Sci. Comput. 85(2), 1–22 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, M., Deng, W.: Discretized fractional substantial calculus. ESAIM Math. Model. Numer. Anal. 49(2), 373–394 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Kanschat, G., Perugia, I., Schotzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cushman, J.H., Ginn, T.R.: Fractional advection–dispersion equation: a classical mass balance with convolution—Fickian flux. Water Resour. Res. 36(12), 3763–3766 (2000)

    Article  Google Scholar 

  12. Deng, J., Zhao, L., Wu, Y.: Fast predictor–corrector approach for the tempered fractional differential equations. Numer. Algorithms 74(3), 717–754 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deng, W., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM Math. Model. Numer. Anal. 47(6), 1845–1864 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deng, W., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional ordinary differential equations. BIT Numer. Math. 55(4), 967–985 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Deng, W., Li, B., Tian, W., Zhang, P.: Boundary problems for the fractional and tempered fractional operators. Multiscale Model. Simul. 16(1), 125–149 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Deng, Z., Bengtsson, L., Singh, V.P.: Parameter estimation for fractional dispersion model for rivers. Environ. Fluid Mech. 6(5), 451–475 (2006)

    Article  Google Scholar 

  17. Ding, H.: A high-order numerical algorithm for two-dimensional time–space tempered fractional diffusion-wave equation. Appl. Numer. Math. 135, 30–46 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22(3), 558–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time finance iii: the diffusion limit. In: Math. Finance, pp. 171–180. Springer (2001)

  20. Hanyga, A.: Wave propagation in media with singular memory. Math. Comput. Model. 34(12–13), 1399–1421 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hendy, A.S., Macías-Díaz, J.E., Serna-Reyes, A.J.: On the solution of hyperbolic two-dimensional fractional systems via discrete variational schemes of high order of accuracy. J. Comput. Appl. Math. 354, 612–622 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, C., An, N., Yu, X.: A local discontinuous Galerkin method for time-fractional diffusion equation with discontinuous coefficient. Appl. Numer. Math. 151, 367–379 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, C., Stynes, M.: Superconvergence of the direct discontinuous Galerkin method for a time-fractional initial-boundary value problem. Numer. Methods Partial Differ. Equ. 35(6), 2076–2090 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, C., Stynes, M., An, N.: Optimal \( {L^{\infty }} ({L^2}) \) error analysis of a direct discontinuous Galerkin method for a time-fractional reaction–diffusion problem. BIT Numer. Math. 58(3), 661–690 (2018)

    Article  MATH  Google Scholar 

  25. Jeon, J.-H., Monne, H.M.-S., Javanainen, M., Metzler, R.: Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins. Phys. Rev. Lett. 109(18), 188103 (2012)

    Article  Google Scholar 

  26. Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  27. Li, B., Wang, T., Xie, X.: Analysis of a time-stepping discontinuous Galerkin method for fractional diffusion-wave equations with nonsmooth data. J. Sci. Comput. 82(1), 1–30 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, C., Deng, W.: High order schemes for the tempered fractional diffusion equations. Adv. Comput. Math. 42(3), 543–572 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, D., Wu, C., Zhang, Z.: Linearized Galerkin fems for nonlinear time fractional parabolic problems with non-smooth solutions in time direction. J. Sci. Comput. 80(1), 403–419 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, L., Zhou, B., Chen, X., Wang, Z.: Convergence and stability of compact finite difference method for nonlinear time fractional reaction–diffusion equations with delay. Appl. Math. Comput. 337, 144–152 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Liao, H.-L., Li, D., Zhang, J.: Sharp error estimate of the nonuniform l1 formula for linear reaction–subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liao, H.-L., McLean, W., Zhang, J.: A discrete Gronwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liao, H.-L., Yan, Y., Zhang, J.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80(1), 1–25 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Luo, Z., Ren, H.: A reduced-order extrapolated finite difference iterative method for the Riemann–Liouville tempered fractional derivative equation. Appl. Numer. Math. 157, 307–314 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lyu, P., Vong, S.: A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin–Bona–Mahony equation. J. Sci. Comput. 80(3), 1607–1628 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ma, G., Stynes, M.: A direct discontinuous Galerkin finite element method for convection-dominated two-point boundary value problems. Numer. Algorithms 83(2), 741–765 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Marom, O., Momoniat, E.: A comparison of numerical solutions of fractional diffusion models in finance. Nonlinear Anal. Real World Appl. 10(6), 3435–3442 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. McLean, W., Mustapha, K.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Meerschaert, M.M., Sabzikar, F., Phanikumar, M.S., Zeleke, A.: Tempered fractional time series model for turbulence in geophysical flows. J. Stat. Mech. Theory Exp. 2014(9), P09023 (2014)

    Article  Google Scholar 

  41. Meerschaert, M.M., Scalas, E.: Coupled continuous time random walks in finance. Phys. A 370(1), 114–118 (2006)

    Article  MathSciNet  Google Scholar 

  42. Meerschaert, M.M., Zhang, Y., Baeumer, B.: Tempered anomalous diffusion in heterogeneous systems. Geophysical Research Letters 35(17) (2008)

  43. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37(31), R161 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations (1993)

  45. Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in science and engineering 198, xxiv+–340 (1999)

  46. Ran, M., Zhang, C.: Linearized Crank–Nicolson scheme for the nonlinear time–space fractional schrödinger equations. J. Comput. Appl. Math. 355, 218–231 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ren, J., Huang, C., An, N.: Direct discontinuous Galerkin method for solving nonlinear time fractional diffusion equation with weak singularity solution. Appl. Math. Lett. 102, 106111 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ren, J., Liao, H.-L., Zhang, J., Zhang, Z.: Sharp h1-norm error estimates of two time-stepping schemes for reaction–subdiffusion problems. J. Comput. Appl. Math. 389, 113352 (2021)

    Article  MATH  Google Scholar 

  49. Scalas, E.: Five years of continuous-time random walks in econophysics. In: The complex networks of economic interactions, pp. 3–16. Springer (2006)

  50. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, X., Deng, W.: Discontinuous Galerkin methods and their adaptivity for the tempered fractional (convection) diffusion equations. J. Comput. Math. 38(6), 839–867 (2020)

    MathSciNet  MATH  Google Scholar 

  52. Xu, Q., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection–diffusion equations. SIAM J. Numer. Anal. 52(1), 405–423 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yang, Y., Yan, Y., Ford, N.J.: Some time stepping methods for fractional diffusion problems with nonsmooth data. Comput. Methods Appl. Math. 18(1), 129–146 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yu, Y., Deng, W., Wu, Y., Wu, J.: Third order difference schemes (without using points outside of the domain) for one sided space tempered fractional partial differential equations. Appl. Numer. Math. 112, 126–145 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zaky, M.A., Hendy, A.S., Macías-Díaz, J.E.: Semi-implicit Galerkin–Legendre spectral schemes for nonlinear time–space fractional diffusion–reaction equations with smooth and nonsmooth solutions. J. Sci. Comput. 82(1), 1–27 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: Tempered fractional Sturm–Liouville eigenproblems. SIAM J. Sci. Comput. 37(4), A1777–A1800 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhang, J., Chen, H., Lin, S., Wang, J.: Finite difference/spectral approximation for a time–space fractional equation on two and three space dimensions. Comput. Math. Appl. 78(6), 1937–1946 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhao, L., Deng, W., Hesthaven, J.S.: Characterization of image spaces of Riemann–Liouville fractional integral operators on Sobolev spaces \({W}^{m, p} ({\Omega })\). Sci. China Math. 64(12), 2611–2636 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhao, Y.-L., Zhu, P.-Y., Gu, X.-M., Zhao, X.-L., Jian, H.-Y.: A preconditioning technique for all-at-once system from the nonlinear tempered fractional diffusion equation. J. Sci. Comput. 83(1), 1–27 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank anonymous referees for carefully reading the manuscript and for their valuable comments and suggestions, which helped us to considerably improve the manuscript.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Safari.

Ethics declarations

Conflict of interest

The authors have no affiliations with or involvement in an organization and entity with a financial or non-financial interest in the subject matter or material discussed in this.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Z. Safari and G. B. Loghmani supported by Grant No. 98013921 of Iran National Science Foundation (INSF).

Appendix

Appendix

Recently, Stynes et al. [50] proved that the following fractional subdiffusion differential equation has a unique solution under proper regularity and compatibility assumption,

$$\begin{aligned} {}_0^C\mathbb {D} _t^{\beta } u(x,t) - d\, \frac{\partial ^2 u(x,t)}{\partial x^2} = f(x,t),\,\, on \,\,\,\,{\varOmega } \times (0,T], \end{aligned}$$
(56)

and there exist a constant \(C_u\) such that

$$\begin{aligned} \left| \frac{\partial ^{\ell } u(x,t)}{\partial t^\ell } \right| \le C_u(1+t^{\beta -\ell }), \quad \ell =0,1,2, \quad 0<t\le T. \end{aligned}$$

Liao et al. [32] presented the sharp error estimate of the nonuniform L1 formula for linear subdiffusion equations by assuming

$$\begin{aligned} \left| \frac{\partial u^{\ell }(x,t)}{\partial t^\ell } \right| \le C_u(1+t^{\sigma -\ell }), \quad \ell =0,1,2, \quad 0<t\le T, \end{aligned}$$
(57)

where the parameter \(\sigma \in (0,1) \cup (1,2)\) reflects the regularity of the solution.

Time–space tempered fractional diffusion equation (1) can be written as follows by considering definition 2,

$$\begin{aligned} {}_0^C\mathbb {D} _t^{\beta } v(x,t) -d\,{}_a{D}_x^{\alpha , \lambda } v(x,t) = g(x,t),\,\, on \,\,\,\,{\varOmega } \times (0,T], \end{aligned}$$
(58)

where \(v(x,t)=e^{\gamma t}u(x,t)\) and \(g(x,t)= e^{\gamma t}f(x,t)\). Fractional differential equation (58) is a version of fractional differential equation (56). Hence, the solution of (58) must be satisfied the following conditions,

$$\begin{aligned} \left| \frac{\partial ^{\ell } v(x,t)}{\partial t^\ell } \right| \le C_v(1+t^{\beta -\ell }), \quad \ell =0,1,2, \quad 0<t\le T. \end{aligned}$$
(59)

Note that, conditions (56) are equivalent to the following conditions

$$\begin{aligned} \left| \frac{\partial u^{\ell }(x,t)}{\partial t^\ell } \right| \le C_u(1+t^{\beta -\ell }), \quad \ell =0,1,2, \quad 0<t\le T. \end{aligned}$$
(60)

To present the error estimate, we assume the following condition similarly to Liao et al. [32, 34], Ren et al. [48] and Cao et al. [5]

$$\begin{aligned} \left| \frac{\partial ^{\ell } u(x,t)}{\partial t^\ell } \right| \le C_u(1+t^{\sigma -\ell }), \quad \ell =0,1,2, \quad 0<t\le T. \end{aligned}$$

where the parameter \(\sigma \in (0,1) \cup (1,2)\) reflects the regularity of the solution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, Z., Loghmani, G.B. & Ahmadinia, M. Convergence Analysis of a LDG Method for Time–Space Tempered Fractional Diffusion Equations with Weakly Singular Solutions. J Sci Comput 91, 68 (2022). https://doi.org/10.1007/s10915-022-01835-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01835-6

Keywords

Mathematics Subject Classification

Navigation