[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Linear High-Order Energy-Preserving Schemes for the Nonlinear Schrödinger Equation with Wave Operator Using the Scalar Auxiliary Variable Approach

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop two classes of linear high-order conservative numerical schemes for the nonlinear Schrödinger equation with wave operator. Based on the method of order reduction in time and the scalar auxiliary variable technique, we transform the original model into an equivalent system, where the energy is modified as a quadratic form. To construct linear high-order conservative schemes, we first adopt the extrapolation strategy to derive a linearized PDE system, which approximates the transformed model with high precision and inherits the modified energy conservation law. Then we employ the symplectic Runge–Kutta method in time to arrive at a class of linear high-order energy-preserving schemes. This numerical strategy presents a paradigm for developing arbitrarily high-order linear structure-preserving algorithms which could be implemented simply. In order to complement the new linear schemes, the prediction-correction method is presented to obtain another class of energy-preserving algorithms. Furthermore, the trigonometric pseudo-spectral method is applied for the spatial discretization to match the order of accuracy in time. We provide ample numerical results to confirm the convergence, accuracy and conservation property of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Machihara, S., Nakanishi, K., Ozawa, T.: Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations. Math. Ann. 322, 603–621 (2002)

    Article  MathSciNet  Google Scholar 

  2. Schoene, A.Y.: On the nonrelativistic limits of the Klein-Gordon and Dirac equations. J. Math. Anal. Appl. 71, 36–47 (1979)

    Article  MathSciNet  Google Scholar 

  3. Tsutumi, M.: Nonrelativistic approximation of nonlinear Klein-Gordon equations in two space dimensions. Nonlinear Anal. 8, 637–643 (1984)

    Article  MathSciNet  Google Scholar 

  4. Bergé, L., Colin, T.: A singular perturbation problem for an envelope equation in plasma physics. Phys. D. 84, 437–459 (1995)

    Article  Google Scholar 

  5. Colin, T., Fabrie, P.: Semidiscretization in time for Schrödinger-wave equations. Discrete Contin. Dynam. Syst. 4, 671–690 (1998)

    Article  Google Scholar 

  6. Bao, W.Z., Dong, X.C., Xin, J.: Comparisons between sine-Gordon equation and perturbed nonlinear Schrödinger equations formodeling light bullets beyond critical collapse. Phys. D. 239, 1120–1134 (2010)

    Article  MathSciNet  Google Scholar 

  7. Xin, J.: Modeling light bullets with the two-dimensional sine-Gordon equation. Phys. D. 135, 345–368 (2000)

    Article  MathSciNet  Google Scholar 

  8. Bao, W.Z., Cai, Y.Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50, 492–521 (2012)

    Article  MathSciNet  Google Scholar 

  9. Li, X., Zhang, L.M., Wang, S.S.: A compact finite difference scheme for the nonlinear Schrödinger equation with wave operator. Appl. Math. Comput. 219, 3187–3197 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Guo, L., Xu, Y.: Energy conserving local discontinuous Galerkin methods for the nonlinear Schrödinger equation with wave operator. J. Sci. Comput. 65, 622–647 (2015)

    Article  MathSciNet  Google Scholar 

  11. Wang, S.S., Zhang, L.M., Fan, R.: Discrete-time orthogonal spline collocation methods for the nonlinear Schrödinger equation with wave operator. J. Comput. Appl. Math. 235, 1993–2005 (2011)

    Article  MathSciNet  Google Scholar 

  12. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A Math. Theor. 41, 045206 (2008)

  13. Li, H.C., Wang, Y.S., Qin, M.Z.: A sixth order averaged vector field method. J. Comput. Math. 34, 479–498 (2016)

    Article  MathSciNet  Google Scholar 

  14. Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian boundary value methods (energy preserving discrete line integral methods). J. Numer. Anal. Ind. Appl. Math. 5, 17–37 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Hairer, E.: Energy-preserving variant of collocation methods. J. Numer. Anal. Ind. Appl. Math. 5, 73–84 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Li, Y.W., Wu, X.Y.: Functionally fitted energy-preserving methods for solving oscillatory nonlinear Hamiltonian systems. SIAM J. Numer. Anal. 54, 2036–2059 (2016)

    Article  MathSciNet  Google Scholar 

  17. Tang, W.S., Sun, Y.J.: Time finite element methods: a unified framework for numerical discretizations of ODEs. Appl. Math. Comput. 219, 2158–2179 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Yang, X.F., Ju, L.L.: Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Engrg. 315, 691–712 (2017)

    Article  MathSciNet  Google Scholar 

  19. Yang, X.F., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  Google Scholar 

  20. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  Google Scholar 

  21. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56(5), 2895–2912 (2018)

    Article  MathSciNet  Google Scholar 

  22. Shen, J., Xu, J., Yang, J.: A new class of efficient and roubust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    Article  MathSciNet  Google Scholar 

  23. Griffiths, D.F., Higham, D.J.: Numerical Methods for Ordinary Differential Equations: Initial Value Problems. Springer, Berlin (2010)

    Book  Google Scholar 

  24. Cooper, G.J.: Stability of Runge-Kutta methods for trajectory problems. IMA J. Numer. Anal. 7, 1–13 (1987)

    Article  MathSciNet  Google Scholar 

  25. Franco, J.M., Gómez, I.: Fourth-order symmetric DIRK methods for periodic stiff problems. Numer. Algo. 32, 317–336 (2003)

    Article  MathSciNet  Google Scholar 

  26. Zhang, H., Qian, X., Song, S.H.: Novel high-order energy-preserving diagonally implicit Runge-Kutta schemes for nonlinear Hamiltonian ODEs. Appl. Math. Lett. 102, 106091 (2020)

  27. Liu, Z.Y., Zhang, H., Qian, X., Song, S.H.: Mass and energy conservative high order diagonally implicit Runge-Kutta schemes for nonlinear Schrödinger equation in one and two dimensions. arXiv:1910.13700 (2019)

  28. Jiang, C.L., Wang, Y.S., Gong, Y.Z.: Arbitrarily high-order energy-preserving schemes for the Camassa-Holm equation. Appl. Numer. Math. 151, 85–97 (2020)

    Article  MathSciNet  Google Scholar 

  29. Li, H., Hong, Q.: An efficient energy-preserving algorithm for the Lorentz force system. Appl. Math. Comput. 358, 161–168 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Gong, Y.Z., Zhao, J.: Energy-stable Runge-Kutta schemes for gradient flow models using the energy quadratization approach. Appl. Math. Lett. 94, 224–231 (2019)

    Article  MathSciNet  Google Scholar 

  31. Gong, Y.Z., Zhao, J., Wang, Q.: Arbitrarily high-order unconditionally energy stable schemes for thermodynamically consistent gradient flow models. SIAM J. Sci. Comput. 42, B135–B156 (2020)

    Article  MathSciNet  Google Scholar 

  32. Gong, Y.Z., Zhao, J., Wang, Q.: Arbitrarily high-order linear schemes for gradient flow models. J. Comput. Phys. 419, 109610 (2020)

  33. Akrivis, G., Li, B.Y., Li, D.F.: Energy-decaying extrapolated RK-SAV methods for the Allen-Cahn and Cahn-Hilliard equations. SIAM J. Sci. Comput. 41, A3703–A3727 (2019)

    Article  MathSciNet  Google Scholar 

  34. Li, X., Gong, Y., Zhang, L.: Two novel classes of linear high-order structure-preserving schemes for the generalized nonlinear Schrödinger equation. Appl. Math. Lett. 104, 106273 (2020)

  35. Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171, 425–447 (2001)

    Article  MathSciNet  Google Scholar 

  36. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian problem. Chapman and Hall, London (1994)

    Book  Google Scholar 

  37. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structurepreserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, Berlin (2006)

    MATH  Google Scholar 

  38. Glasner, K., Orizaga, S.: Improving the accuracy of convexity splitting methods for gradient flow equations. J. Comput. Phys. 315, 52–64 (2016)

    Article  MathSciNet  Google Scholar 

  39. Shen, J., Xu, J.: Stabilized predictor-corrector schemes for gradient flows with strong anisotropic free energy. Commun. Comput. Phys. 24, 635–654 (2018)

    Article  MathSciNet  Google Scholar 

  40. Li, X., Zhang, L.M.: A conservative sine pseudo-spectral-difference method for multi-dimensional coupled Gross-Pitaevskii equations. Adv. Comput. Math. 46, 26 (2020)

    Article  MathSciNet  Google Scholar 

  41. Gong, Y.Z., Cai, J.X., Wang, Y.S.: Multi-symplectic Fourier pseudospectral method for the Kawahara equation. Commun. Comput. Phys. 16, 35–55 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuezheng Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yuezheng Gong: He is supported by the Foundation of Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems (202002), a grant BK20180413 from the Nature Science Foundation of Jiangsu Province and a grant 11801269 from the National Nature Science Foundation of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Gong, Y. & Zhang, L. Linear High-Order Energy-Preserving Schemes for the Nonlinear Schrödinger Equation with Wave Operator Using the Scalar Auxiliary Variable Approach. J Sci Comput 88, 20 (2021). https://doi.org/10.1007/s10915-021-01533-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01533-9

Keywords

Navigation