[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

High Order Compact Block-Centered Finite Difference Schemes for Elliptic and Parabolic Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Based on the combination of block-centered and compact difference methods, fourth order compact block-centered finite difference schemes for the numerical solutions of one-dimensional and two-dimensional elliptic and parabolic problems with variable coefficients are derived and analyzed. Stability and optimal fourth-order error estimates are proved for both the solution and flux. Numerical experiments for model problems are presented to confirm the theoretical results and superior performance of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arbogast, T., Dawson, C.N., Keenan, P.T., Wheeler, M.F., Yotov, I.: Enhanced cell-centered finite differences for elliptic equations on general geometry. SIAM J. Sci. Comput. 19, 404–425 (1998)

    Article  MathSciNet  Google Scholar 

  2. Arbogast, T., Wheeler, M.F., Yotov, I.: Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34, 828–852 (1997)

    Article  MathSciNet  Google Scholar 

  3. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science Publishers, London (1979)

    Google Scholar 

  4. Bear, J.: Hydraulics of groundwater. McGraw-Hill, New York (1978)

    Google Scholar 

  5. Carpenter, M., Gottlieb, D., Abarbanel, S.: The stability of numerical boundary treatments for compact high-order finite-difference schemes. J. Comput. Phys. 108, 272–295 (1993)

    Article  MathSciNet  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: Nonlinearly stable compact schemes for shock calculations. SIAM J. Numer. Anal. 31, 607–627 (1994)

    Article  MathSciNet  Google Scholar 

  7. Ciment, M., Leventhal, S.: Higher order compact implicit schemes for the wave equation. Math. Comp. 29, 985–994 (1975)

    Article  MathSciNet  Google Scholar 

  8. Dawson, C.N., Dupont, T.F.: Explicit/implicit, conservative domain decomposition procedures for parabolic problems based on block-centered finite differences. SIAM J. Numer. Anal. 31, 1045–1061 (1994)

    Article  MathSciNet  Google Scholar 

  9. Forsyth, P.A., Sammon, P.H.: Quadratic convergence for cell-centered grids. Appl. Numer. Math. 4, 377–394 (1988)

    Article  MathSciNet  Google Scholar 

  10. Hirsh, R.S.: Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique. J. Comput. Phys. 19, 90–109 (1975)

    Article  MathSciNet  Google Scholar 

  11. Kreiss, H.O., Manteuffel, T.A., Swartz, B.Z., Wendroff, B., White, A.B.: Supra-convergent schemes on irregular grids. Math. Comp. 47, 537–554 (1986)

    Article  MathSciNet  Google Scholar 

  12. Kreiss, H.O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24, 199–215 (1972)

    Article  MathSciNet  Google Scholar 

  13. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  Google Scholar 

  14. Li, H., Xie, S., Zhang, X.: A high order accurate bound-preserving compact finite difference scheme for scalar convection diffusion equations. SIAM J. Numer. Anal. 56, 3308–3345 (2018)

    Article  MathSciNet  Google Scholar 

  15. Liang, D., Zhou, Z.: The conservative spliting domain decomposition method for multicomponent Contamination flows in porous media. J Comput. Phys. 400, 411–441 (2020)

    Article  Google Scholar 

  16. Manteuffel, T.A., White, A.B.: The numerical solution of second-order boundary value problems on nonuniform meshes. Math. Comp. 47(511–535), S53–S55 (1986)

    Article  MathSciNet  Google Scholar 

  17. Peaceman, D.W.: Fundamentals of Numerical Reservoir Simulation. Elsevier Scientific Publishing Co., Amsterdam (1977)

    Google Scholar 

  18. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2-nd order elliptic problems Mathematical aspects of finite element methods. pp. 292–315. Springer, Berlin, Heidelberg (1977)

  19. Rui, H., Pan, H.: A block-centered finite difference method for the Darcy- Forchheimer model. SIAM J. Numer. Anal. 50, 2612–2631 (2012)

    Article  MathSciNet  Google Scholar 

  20. Rui, H., Pan, H.: Block-centered finite difference methods for parabolic equation with time-dependent coefficient. Jpn. J. Ind. Appl. Math. 30, 681–699 (2013)

    Article  MathSciNet  Google Scholar 

  21. Russell, T.F., Wheeler, M.F., Ewing, R.E.: Finite element and finite difference methods for continuous flows in porous mediaThe Mathematics of Reservoir Simulation. Society for Industrial and Applied Mathematics, Philadelphia, PA (1983)

    Google Scholar 

  22. Settari, A., Aziz, K.: Use of irregular grid in research simulations. Soc. Pet. Engrg. J. 12, 103–114 (1972)

    Article  Google Scholar 

  23. Settari, A., Aziz, K.: Use of irregular grid in cylindrical coordinates. Soc. Pet. Engrg. J. 14, 396–404 (1974)

    Article  Google Scholar 

  24. Shang, J.S.: High-order compact difference schemes for time-dependent Maxwell equations. J. Comput. Phys. 153, 312–333 (1999)

    Article  MathSciNet  Google Scholar 

  25. Shukla, R.K., Zhong, X.: Derivation of high order compact finite difference schemes for non-uniform grid using polynomial interpolation. J. Comput. Phys. 204, 404–429 (2005)

    Article  MathSciNet  Google Scholar 

  26. Tikhonov, A.N., Samarskii, A.A.: Homogeneous difference schemes on irregular meshes. Zh. Vychisl. Mat. Mat. Fiz. 2, 812–832 (1962)(In Russian). U.S.S.R. Comput. Math. and Math. Phys. 2, 927–953(In English)

  27. Weiser, A., Wheeler, M.F.: On convergence of block-centered finite differences for elliptic problems. SIAM J. Numer. Anal. 25, 351–375 (1988)

    Article  MathSciNet  Google Scholar 

  28. Xie, S., Li, G., Yi, S.: Compact finite difference schemes with high accuracy for onedimensional nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Engrg. 198, 1052–1060 (2009)

    Article  MathSciNet  Google Scholar 

  29. Zhou, Z., Liang, D.: The mass-preserving S-DDM scheme for two-dimensional parabolic equations. Commun. Comput. Phys. 19, 411–441 (2016)

    Article  MathSciNet  Google Scholar 

  30. Zhou, Z., Liang, D.: The mass-preserving and modified upwind spliting DDM scheme for time dependent convection-diffusion equations. J. Comput. Appl. Math. 317, 247–273 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shusen Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author (Xie) was partially supported by National Natural Science Foundation of China Grants 11871443. The third author (Liang) was partially supported by Natural Sciences and Engineering Research Council of Canada. The fourth author (Fu) was partially supported by National Natural Science Foundation of China Grants 11601497.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Xie, S., Liang, D. et al. High Order Compact Block-Centered Finite Difference Schemes for Elliptic and Parabolic Problems. J Sci Comput 87, 86 (2021). https://doi.org/10.1007/s10915-021-01507-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01507-x

Keywords

Mathematics Subject Classification

Navigation