[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Enriched Finite Volume Approximations of the Plane-Parallel Flow at a Small Viscosity

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We investigate viscous boundary layers of the plane-parallel flow, governed by the stationary Navier–Stokes equations under a certain symmetry. Following the analysis in Gie et al. (Annales de l’Institut Henri Poincaré C. Analyse Non Linéaire, 2018), we first construct the so-called corrector, which is an analytic approximation of the velocity vector field near the boundary. Then, by embedding the corrector function into the classical Finite Volume schemes, we construct the semi-analytic enriched Finite Volume schemes for the plane-parallel flow, and numerically verify that our new enriched schemes reduce significantly the computational error of classical schemes especially near the boundary, and hence produce more accurate approximations without introducing any finer mesh near the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bousquet, A., Gie, G.-M., Hong, Y., Laminie, J.: A higher order Finite Volume resolution method for a system related to the inviscid primitive equations in a complex domain. Numerische Mathematik 128(3), 431–461 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Cheng, W., Temam, R.: Numerical approximation of one-dimensional stationary diffusion equations with boundary layers. Comput. Fluids 31(4–7), 453–466 (2002). Dedicated to Professor Roger Peyret on the occasion of his 65th birthday (Marseille, 1999)

    MathSciNet  MATH  Google Scholar 

  3. Cheng, W., Temam, R., Wang, X.: New approximation algorithms for a class of partial differential equations displaying boundary layer behavior. Methods Appl. Anal. 7(2), 363–390 (2000). Cathleen Morawetz: a great mathematician

    MathSciNet  MATH  Google Scholar 

  4. Faure, S., Pham, D., Temam, R.: Comparison of finite volume and finite difference methods and application. Anal. Appl. (Singap.) 4(2), 163–208 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Gie, G.-M., Hamouda, M., Jung, C.-Y., Temam, R.: Singular Perturbations and Boundary Layers, volume 200 of Applied Mathematical Sciences. Springer Nature Switzerland AG, Basel (2018). https://doi.org/10.1007/978-3-030-00638-9

    Book  Google Scholar 

  6. Gie, G.-M., Jung, C.-Y., Nguyen, T.B.: Validation of a 2D cell-centered Finite Volume method for elliptic equations. Math. Comput. Simul. (2019). https://doi.org/10.1016/j.matcom.2019.03.008

    Article  MathSciNet  Google Scholar 

  7. Gie, G.-M., Kelliher, J., Lopes Filho, M., Mazzucato, A., Nussenzveig Lopes, H.: Vanishing viscosity limit of some symmetric flows, Annales de l’Institut Henri Poincaré C. Analyse Non Linéaire (2018). https://doi.org/10.1016/j.anihpc.2018.11.006

  8. Gie, G.-M., Temam, R.: Cell centered finite volume methods using Taylor series expansion scheme without fictitious domains. Int. J. Numer. Anal. Model. 7(1), 1–29 (2010)

    MathSciNet  Google Scholar 

  9. Gie, G.-M., Temam, R.: Convergence of a cell-centered finite volume method and application to elliptic equations. Int. J. Numer. Anal. Model. 12(3), 536–566 (2015)

    MathSciNet  Google Scholar 

  10. Han, H., Kellogg, R.B.: Differentiability properties of solutions of the equation \(-\epsilon ^2\Delta u+ru=f(x, y)\) in a square. SIAM J. Math. Anal. 21(2), 394–408 (1990)

    MathSciNet  MATH  Google Scholar 

  11. Hemker, P.W.: A numerical study of stiff two-point boundary problems. Mathematisch Centrum, Amsterdam (1977). Mathematical Centre Tracts, No. 80

  12. Hong, Y., Jung, C.-Y., Laminie, J.: Singularly perturbed reaction-diffusion equations in a circle with numerical applications. Int. J. Comput. Math. 90(11), 2308–2325 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Hong, Y., Jung, C.-Y., Temam, R.: On the numerical approximations of stiff convection-diffusion equations in a circle. Numer. Math. 127(2), 291–313 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Jung, C.-Y.: Finite elements scheme in enriched subspaces for singularly perturbed reaction-diffusion problems on a square domain. Asymptot. Anal. 57(1–2), 41–69 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Jung, C.-Y., Temam, R.: Finite volume approximation of one-dimensional stiff convection-diffusion equations. J. Sci. Comput. 41(3), 384–410 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Jung, C.-Y., Temam, R.: Finite volume approximation of two-dimensional stiff problems. Int. J. Numer. Anal. Model. 7(3), 462–476 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Kelliher, J.P.: Vanishing viscosity and the accumulation of vorticity on the boundary. Commun. Math. Sci. 6(4), 869–880 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Lighthill, M.J.: Introduction–Boundary Layer Theory. Laminar Boundary Layers, chapter II, pp. 46–113. Oxford University Press, Oxford (1963)

  19. Mazzucato, A.L., Nistor, V., Qingqin, Q.: A nonconforming generalized finite element method for transmission problems. SIAM J. Numer. Anal. 51(1), 555–576 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Mazzucato, A.L., Nistor, V., Qingqin, Q.: Quasi-optimal rates of convergence for the generalized finite element method in polygonal domains. J. Comput. Appl. Math. 263, 466–477 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Ou, C.H., Wong, R.: Shooting method for nonlinear singularly perturbed boundary-value problems. Stud. Appl. Math. 112(2), 161–200 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Roos, H.-G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer Series in Computational Mathematics, vol. 24. Springer, Berlin (1996)

    MATH  Google Scholar 

  23. Stynes, M.: Steady-state convection-diffusion problems. Acta Numer. 14, 445–508 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported partially by Collaboration Grant for Mathematicians, Simons Foundation and Research - RII Grant, Office of the Executive Vice President for Research and Innovation, University of Louisville. The second and third authors were supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2018R1D1A1B07048325) and the Research Fund (1.190136.01) of UNIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gung-Min Gie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gie, GM., Jung, CY. & Lee, H. Enriched Finite Volume Approximations of the Plane-Parallel Flow at a Small Viscosity. J Sci Comput 84, 7 (2020). https://doi.org/10.1007/s10915-020-01259-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01259-0

Keywords

Navigation