[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Linearized Finite Difference Scheme for the Richards Equation Under Variable-Flux Boundary Conditions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The Richards equation is a degenerate nonlinear PDE that models a flow through saturated/unsaturated porous media. Research on its numerical methods has been conducted in many fields. Implicit schemes based on a backward Euler format are widely used in calculating it. However, it is difficult to obtain stability with a numerical scheme because of the strong nonlinearity and degeneracy. In this paper, we establish a linearized semi-implicit finite difference scheme that is faster than backward Euler implicit schemes. We analyze the stability of this scheme by adding a small positive perturbation \(\epsilon \) to the coefficient function of the Richards equation. Moreover, we show that there is a linear relationship between the discretization error in the \(L^{\infty }\)-norm and \(\epsilon \). Numerical experiments are carried out to verify our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akrivis, G.D.: Finite difference discretization of the Kuramoto–Sivashinsky equation. Numer. Math. 63, 1–11 (1992)

    Article  MathSciNet  Google Scholar 

  2. Baca, R.G., Chung, J.N., Mulla, D.J.: Mixed transform finite element method for solving the non-linear equation for flow in variably saturated porous media. Int. J. Numer. Methods Fluids 24, 441–455 (1997)

    Article  MathSciNet  Google Scholar 

  3. Berardi, M., Vurro, M.: The numerical solution of the Richards equation by means of method of lines and ensemble Kalman filter. Math. Comput. Simul. 125, 38–47 (2016)

    Article  MathSciNet  Google Scholar 

  4. Berganaschi, L., Putti, M.: Mixed finite elements and Newton-type linearizations for the solution of the Richards equation. Int. J. Numer. Methods Eng. 45, 1025–1046 (1999)

    Article  MathSciNet  Google Scholar 

  5. Broadbridge, P., Edwards, M.P., Kearton, J.E.: Closed-form solutions for unsaturated flow under variable flux boundary conditions. Adv. Water Resour. 19, 207–213 (1996)

    Article  Google Scholar 

  6. Broadbridge, P., Daly, E., Goard, J.: Exact solutions of the Richard equation with nonlinear plant-root extraction. Water Resour. Res. 53, 9679–9691 (2017)

    Article  Google Scholar 

  7. Broadbridge, P., Triadis, F., Hill, J.M.: Infiltration from supply at constant water content: an integrable model. J. Eng. Math. 64, 193–206 (2009)

    Article  MathSciNet  Google Scholar 

  8. Celia, M.A., Bouloutas, E.T.: A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26, 1483–1496 (1990)

    Article  Google Scholar 

  9. Cheng, K., Feng, W., Wang, C., Wise, S.M.: An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. J. Comput. Appl. Math. 362, 574–595 (2019)

    Article  MathSciNet  Google Scholar 

  10. Clement, T., Wise, W.R., Molz, F.J.: A physically based, two-dimensional, finite-difference algorithm for modeling variably saturated flow. J. Hydrol. 161, 71–90 (1994)

    Article  Google Scholar 

  11. Eymard, R., Gutnic, M., Hillhorst, D.: The finite volume method for Richards equation. Comput. Geosci. 3, 259–294 (1999)

    Article  MathSciNet  Google Scholar 

  12. Furihata, D., Mori, M.: Stability and convergence of difference schemes for the Cahn–Hilliard equation. In: Mitsui, T. (ed.) Proceedings of Theory and Applications of Numerical Calculation in Science and Technology, Kyoto, Japan, 1995, Kokyuroku (RIMS, Kyoto University 1996), No. 944, pp. 235–246 (in Japanese)

  13. Gao, Z., Xie, S.: Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations. Appl. Numer. Math. 61, 593–614 (2011)

    Article  MathSciNet  Google Scholar 

  14. Gilding, B.: Qualitative mathematical analysis of the Richards equation. Transp. Porous Med. 6(5–6), 651–666 (1991)

    Google Scholar 

  15. Haverkamp, R., Vauclin, M., Touma, J., Wierenga, J., Vachaud, G.: A comparison of numerical simulation models for one-dimensional infiltration. Soil Sci. Soc. Am. J. 41, 285–295 (1977)

    Article  Google Scholar 

  16. Haverkamp, R., Vauclin, M.: A note on estimating finite difference interblock hydraulic conductivity values for transient unsaturated flow problems. Water Resour. Res. 15, 181–187 (1979)

    Article  Google Scholar 

  17. Hornung, U., Wessing, W.: Poröse Medien-Methoden und Simulation. Verlag Beiträgezur Hydrologie, Kirchzarten (1984)

    Google Scholar 

  18. Kavetski, D., Binning, P., Sloan, S.W.: Adaptive time stepping and error control in a mass conservative numerical solution of the mixed form of Richards equation. Adv. Water Res. 24, 595–605 (2001)

    Article  Google Scholar 

  19. Knabner, P.: Finite element simulation of saturated-unsaturated flow through porous media. In: Deuflhard, P., Engquist, B. (eds.) Large Scale Scientific Computing. Progress in Scientific Computing, vol. 7, pp. 83–93. Birkhäuser, Boston (1987)

    Chapter  Google Scholar 

  20. Kumar, C.: A numerical simulation model for one-dimensional infiltration. ISH J. Hydraul. Eng. 4, 5–15 (1998)

    Article  Google Scholar 

  21. Li, Y., Lee, H.G., Xia, B., Binhu, Kim, J.: A compact fourth-order finite difference scheme for the three-dimensional Cahn–Hilliard equation. Comput. Phys. Commun. 200, 108–116 (2016)

    Article  MathSciNet  Google Scholar 

  22. List, F., Radu, F.A.: A study on iterative methods for solving the Richards equation. Comput. Geosci. 20, 341–353 (2016)

    Article  MathSciNet  Google Scholar 

  23. Lopez, L., Vacca, G.: Spectral properties and conservation laws in mimetic finite difference methods for PDEs. J. Comput. Appl. Math. 292, 760–784 (2016)

    Article  MathSciNet  Google Scholar 

  24. Lopez, L.: A method for the numerical solution of a class of nonlinear diffusion equations. Rocky Mt. J. Math. 21, 1083–1097 (1991)

    Article  MathSciNet  Google Scholar 

  25. Radu, F., Pop, I.S., Knabner, P.: Order of convergence estimates for an Euler implicit, mixed finite element discretization of the Richards equation. SIAM J. Numer. Anal. 42, 1452–1478 (2004)

    Article  MathSciNet  Google Scholar 

  26. Rathfelder, K., Abriola, L.M.: Mass conservative numerical solutions of the head-based Richards equation. Water Resour. Res. 30, 2579–2586 (1994)

    Article  Google Scholar 

  27. Romano, N., Brunone, B., Santini, A.: Numerical analysis of one-dimensional unsaturated flow in layered soils. Adv. Water Resour. 21, 315–324 (1998)

    Article  Google Scholar 

  28. Szymkiewicz, A., Helmig, R.: Comparison of conductivity averaging methods for one-dimensional unsaturated flow in layered soils. Adv. Water Resour. 34, 112–125 (2011)

    Article  Google Scholar 

  29. Warrick, A.W.: Numerical approximations of Darcian flow through unsaturated soil. Water Resour. Res. 27, 1215–1222 (1991)

    Article  Google Scholar 

  30. Wang, C., Liu, J.-G., Johnston, H.: Analysis of a fourth order finite difference method for the incompressible Boussinesq equations. Numer. Math. 97, 555–594 (2004)

    Article  MathSciNet  Google Scholar 

  31. Wang, S., Petersson, N.A.: Fourth order finite difference methods for the wave equation with mesh refinement interfaces. SIAM J. Sci. Comput. 41, A3246–A3275 (2019)

    Article  MathSciNet  Google Scholar 

  32. Wang, T., Liu, T.: A consistent fourth-order compact finite difference scheme for solving vorticity-stream function form of incompressible Navier–Stokes equations. Numer. Math. Theory Methods Appl. 12, 312–330 (2019)

    Article  MathSciNet  Google Scholar 

  33. Williams, G.A., Miller, C.T.: An evaluation of temporally adaptive transformation approaches for solving the Richards equation. Adv. Water Res. 22, 831–840 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

LF was supported by Fundamental Research Funds for the Central Universities (No. DUT19RC(4)038); YF was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Grant No. 16K05476); XZ was supported by the China Postdoctoral Science Foundation (Grant No. 2015M581689). The draft of this paper was finished when LF and XZ visited the Institute of Mathematics for Industry of Kyushu University in the summer of 2018. They wish to appreciate the hospitality of Ms. Sasaguri.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fengnan, L., Fukumoto, Y. & Zhao, X. A Linearized Finite Difference Scheme for the Richards Equation Under Variable-Flux Boundary Conditions. J Sci Comput 83, 16 (2020). https://doi.org/10.1007/s10915-020-01196-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01196-y

Keywords

Mathematics Subject Classification

Navigation