Abstract
In this work, we study advection-robust Hybrid High-Order discretizations of the Oseen equations. For a given integer \(k\geqslant 0\), the discrete velocity unknowns are vector-valued polynomials of total degree \(\leqslant \, k\) on mesh elements and faces, while the pressure unknowns are discontinuous polynomials of total degree \(\leqslant \,k\) on the mesh. From the discrete unknowns, three relevant quantities are reconstructed inside each element: a velocity of total degree \(\leqslant \,(k+1)\), a discrete advective derivative, and a discrete divergence. These reconstructions are used to formulate the discretizations of the viscous, advective, and velocity–pressure coupling terms, respectively. Well-posedness is ensured through appropriate high-order stabilization terms. We prove energy error estimates that are advection-robust for the velocity, and show that each mesh element T of diameter \(h_T\) contributes to the discretization error with an \(\mathcal {O}(h_{T}^{k+1})\)-term in the diffusion-dominated regime, an \(\mathcal {O}(h_{T}^{k+\frac{1}{2}})\)-term in the advection-dominated regime, and scales with intermediate powers of \(h_T\) in between. Numerical results complete the exposition.
Similar content being viewed by others
References
Aghili, J., Boyaval, S., Di Pietro, D.A.: Hybridization of mixed high-order methods on general meshes and application to the Stokes equations. Comput. Methods Appl. Math. 15(2), 111–134 (2015). https://doi.org/10.1515/cmam-2015-0004
Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM: Math. Model. Numer. Anal. 50(3), 879–904 (2016)
Badia, S., Codina, R., Gudi, T., Guzmán, J.: Error analysis of discontinuous Galerkin methods for the Stokes problem under minimal regularity. IMA J. Numer. Anal. 34(2), 800–819 (2014). https://doi.org/10.1093/imanum/drt022
Bassi, F., Botti, L., Colombo, A., Di Pietro, D.A., Tesini, P.: On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231(1), 45–65 (2012). https://doi.org/10.1016/j.jcp.2011.08.018
Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 218(2), 794–815 (2006). https://doi.org/10.1016/j.jcp.2006.03.006
Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows. Comp. Fluids 36(10), 1529–1546 (2007). https://doi.org/10.1016/j.compfluid.2007.03.012
Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997). https://doi.org/10.1006/jcph.1996.5572
Becker, R., Capatina, D., Joie, J.: Connections between discontinuous Galerkin and nonconforming finite element methods for the Stokes equations. Numer. Methods Partial Differ. Equ. 28(3), 1013–1041 (2012). https://doi.org/10.1002/num.20671
Beirao da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 199(23), 199–214 (2013)
Beirao da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: Math. Model. Numer. Anal. (M2AN) 51(2), 509–535 (2017)
Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Berlin (2013)
Boffi, D., Di Pietro, D.A.: Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes. ESAIM: Math. Model. Numer. Anal. 52(1), 1–28 (2018). https://doi.org/10.1051/m2an/2017036
Botti, M., Di Pietro, D.A., Sochala, P.: A hybrid high-order method for nonlinear elasticity. SIAM J. Numer. Anal. 55(6), 2687–2717 (2017). https://doi.org/10.1137/16M1105943
Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed virtual element methods. ESAIM: Math. Model. Numer. Anal. 48(4), 1227–1240 (2014). https://doi.org/10.1051/m2an/2013138
Brezzi, F., Marini, L.D., Süli, E.: Discontinuous Galerkin methods for first-order hyperbolic problems. Math. Models Methods Appl. Sci. 14(12), 1893–1903 (2004). https://doi.org/10.1142/S0218202504003866
Burman, E., Stamm, B.: Bubble stabilized discontinuous Galerkin method for Stokes’ problem. Math. Models Methods Appl. Sci. 20(2), 297–313 (2010). https://doi.org/10.1142/S0218202510004234
Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676–1706 (2000)
Çeşmelioğlu, A., Cockburn, B., Nguyen, N.C., Peraire, J.: Analysis of HDG methods for Oseen equations. J. Sci. Comput. 55(2), 392–431 (2013). https://doi.org/10.1007/s10915-012-9639-y
Çeşmelioğlu, A., Cockburn, B., Qiu, W.: Analysis of an HDG method for the incompressible Navier–Stokes equations. Math. Comput. 86, 1643–1670 (2017). https://doi.org/10.1090/mcom/3195
Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: Math. Model. Numer. Anal. 50(3), 635–650 (2016). https://doi.org/10.1051/m2an/2015051
Cockburn, B., Fu, G.: Superconvergence by \(M\)-decompositions. Part II: construction of two-dimensional finite elements. ESAIM: Math. Model. Numer. Anal. 51, 165–186 (2017)
Cockburn, B., Fu, G.: Superconvergence by \(M\)-decompositions. Part III: construction of three-dimensional finite elements. ESAIM: Math. Model. Numer. Anal. 51, 365–398 (2017)
Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009). https://doi.org/10.1137/070706616
Cockburn, B., Gopalakrishnan, J., Sayas, F.J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)
Cockburn, B., Hou, S., Shu, C.W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990). https://doi.org/10.2307/2008501
Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74(251), 1067–1095 (2005). https://doi.org/10.1090/S0025-5718-04-01718-1
Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. J. Sci. Comput. 31(1–2), 61–73 (2007). https://doi.org/10.1007/s10915-006-9107-7
Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40(1), 319–343 (2002). https://doi.org/10.1137/S0036142900380121
Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989). https://doi.org/10.1016/0021-9991(89)90183-6
Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989). https://doi.org/10.2307/2008474
Cockburn, B., Shu, C.W.: The Runge–Kutta local projection \(P^1\)-discontinuous-Galerkin finite element method for scalar conservation laws. RAIRO Modél. Math. Anal. Numér. 25(3), 337–361 (1991). https://doi.org/10.1051/m2an/1991250303371
Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998). https://doi.org/10.1006/jcph.1998.5892
Crivellini, A., D’Alessandro, V., Bassi, F.: Assessment of a high-order discontinuous Galerkin method for incompressible three-dimensional Navier–Stokes equations: benchmark results for the flow past a sphere up to \({{\rm Re}}=500\). Comput. Fluids 86, 442–458 (2013). https://doi.org/10.1016/j.compfluid.2013.07.027
Decuypere, R., Dibelius, G. (eds.): A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows (1997)
Di Pietro, D.A.: Analysis of a discontinuous Galerkin approximation of the Stokes problem based on an artificial compressibility flux. Int. J. Numer. Methods Fluids 55(8), 793–813 (2007). https://doi.org/10.1002/fld.1495
Di Pietro, D.A., Droniou, J.: A hybrid high-order method for Leray–Lions elliptic equations on general meshes. Math. Comput. 86(307), 2159–2191 (2017). https://doi.org/10.1090/mcom/3180
Di Pietro, D.A., Droniou, J.: \(W^{s, p}\)-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a hybrid high-order discretisation of Leray–Lions problems. Math. Models Methods Appl. Sci. 27(5), 879–908 (2017). https://doi.org/10.1142/S0218202517500191
Di Pietro, D.A., Droniou, J., Ern, A.: A discontinuous-skeletal method for advection–diffusion–reaction on general meshes. SIAM J. Numer. Anal. 53(5), 2135–2157 (2015). https://doi.org/10.1137/140993971
Di Pietro, D.A., Droniou, J., Manzini, G.: Discontinuous skeletal gradient discretisation methods on polytopal meshes. J. Comput. Phys. 355, 397–425 (2018). https://doi.org/10.1016/j.jcp.2017.11.018
Di Pietro, D.A., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comput. 79, 1303–1330 (2010). https://doi.org/10.1090/S0025-5718-10-02333-1
Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques and Applications, vol. 69. Springer, Berlin (2012)
Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015). https://doi.org/10.1016/j.cma.2014.09.009
Di Pietro, D.A., Ern, A., Guermond, J.L.: Discontinuous Galerkin methods for anisotropic semi-definite diffusion with advection. SIAM J. Numer. Anal. 46(2), 805–831 (2008). https://doi.org/10.1137/060676106
Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014). https://doi.org/10.1515/cmam-2014-0018
Di Pietro, D.A., Ern, A., Linke, A., Schieweck, F.: A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Eng. 306, 175–195 (2016). https://doi.org/10.1016/j.cma.2016.03.033
Di Pietro, D.A., Krell, S.: A hybrid high-order method for the steady incompressible Navier–Stokes problem. J. Sci. Comput. 74(3), 1677–1705 (2018). https://doi.org/10.1007/s10915-017-0512-x
Di Pietro, D.A., Lemaire, S.: An extension of the Crouzeix–Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow. Math. Comput. 84(291), 1–31 (2015). https://doi.org/10.1090/S0025-5718-2014-02861-5
Di Pietro, D.A., Tittarelli, R.: Lectures from the fall 2016 thematic quarter at Institut Henri Poincaré, chap. An Introduction to Hybrid High-Order methods. SEMA-SIMAI. Springer (2017). arXiv:1703.05136 (to appear)
Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: The gradient discretisation method: a framework for the discretisation and numerical analysis of linear and nonlinear elliptic and parabolic problems. Maths and Applications. Springer (2017). https://hal.archives-ouvertes.fr/hal-01382358 (to appear)
Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159. Springer, New York (2004)
Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable discontinuous Galerkin with degree adaptivity for the incompressible Navier–Stokes equations. Comput. Fluids 98, 196–208 (2014)
Girault, V., Rivière, B., Wheeler, M.F.: A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier–Stokes problems. Math. Comput. 74(249), 53–84 (2005). https://doi.org/10.1090/S0025-5718-04-01652-7
Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
Hansbo, P., Larson, M.G.: Piecewise divergence-free discontinuous Galerkin methods for Stokes flow. Commun. Numer. Methods Eng. 24(5), 355–366 (2008). https://doi.org/10.1002/cnm.975
Herbin, R., Hubert, F.: Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Eymard, R., Hérard, J.M. (eds.) Finite Volumes for Complex Applications, vol. V, pp. 659–692. Wiley, New York (2008)
Karakashian, O., Katsaounis, T.: A discontinuous Galerkin method for the incompressible Navier–Stokes equations. In: Discontinuous Galerkin Methods (Newport, RI, 1999). Lecture Notes in Computational Science and Engineering, vol. 11, pp. 157–166. Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-59721-3_11
Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. Math. Proc. Camb. Philos. Soc. 44(1), 58–62 (1948). https://doi.org/10.1017/S0305004100023999
Mozolevski, I., Süli, E., Bösing, P.R.: Discontinuous Galerkin finite element approximation of the two-dimensional Navier–Stokes equations in stream-function formulation. Commun. Numer. Methods Eng. 23(6), 447–459 (2007). https://doi.org/10.1002/cnm.944
Nguyen, N., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 230, 1147–1170 (2011)
Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36(4), 1943–1967 (2016)
Rivière, B., Sardar, S.: Penalty-free discontinuous Galerkin methods for incompressible Navier–Stokes equations. Math. Models Methods Appl. Sci. 24(6), 1217–1236 (2014). https://doi.org/10.1142/S0218202513500826
Tavelli, M., Dumbser, M.: A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier–Stokes equations. Appl. Math. Comput. 248, 70–92 (2014). https://doi.org/10.1016/j.amc.2014.09.089
Toselli, A.: \(hp\) discontinuous Galerkin approximations for the Stokes problem. Math. Models Methods Appl. Sci. 12(11), 1565–1597 (2002). https://doi.org/10.1142/S0218202502002240
Ueckermann, M.P., Lermusiaux, P.F.J.: Hybridizable discontinuous Galerkin projection methods for Navier–Stokes and Boussinesq equations. J. Comput. Phys. 306, 390–421 (2016). https://doi.org/10.1016/j.jcp.2015.11.028
Wihler, T.P., Wirz, M.: Mixed \(hp\)-discontinuous Galerkin FEM for linear elasticity and Stokes flow in three dimensions. Math. Models Methods Appl. Sci. 22(8), 1250016 (2012). https://doi.org/10.1142/S0218202512500169.31
Author information
Authors and Affiliations
Corresponding author
Additional information
The work of the second author was supported by Agence Nationale de la Recherche Grant HHOMM (ANR-15-CE40-0005).
Flux Formulation
Flux Formulation
In this section we reformulate the discrete problem in terms of numerical fluxes, and show that local momentum and mass balances hold. Let a mesh element \(T\in \mathcal {T}_{h}\) be fixed, and define the boundary difference space
We introduce the boundary difference operator \(\underline{\varvec{\varDelta }}_{\partial T}^{k}:\underline{\varvec{U}}_{T}^{k}\rightarrow \underline{\varvec{D}}_{\partial T}^k\) such that, for all \(\underline{\varvec{v}}_{T}\in \underline{\varvec{U}}_{T}^{k}\),
The following result was proved in the scalar case in [48, Proposition 3].
Proposition 2
(Reformulation of the viscous stabilization bilinear form) Let an element \(T\in \mathcal {T}_{h}\) be fixed, and let \(\{\mathrm {s}_{\nu ,T}\; : \;T\in \mathcal {T}_{h}\}\) denote a family of viscous stabilization bilinear forms that satisfy assumptions (S1)–(S3) in Remark 2, and which depend on their arguments only via the difference operators defined by (12). Then, for all \(T\in \mathcal {T}_{h}\) and all \(\underline{\varvec{w}}_{T},\underline{\varvec{v}}_{T}\in \underline{\varvec{U}}_{T}^{k}\) it holds that
The reformulation (67) of the viscous stabilization term prompts the following definition: For all \(T\in \mathcal {T}_{h}\), the boundary residual operator \(\underline{\varvec{R}}_{\partial T}^k:\underline{\varvec{U}}_{T}^{k}\rightarrow \underline{\varvec{D}}_{\partial T}^k\) is such that, for all \(\underline{\varvec{w}}_{T}\in \underline{\varvec{U}}_{T}^{k}\),
satisfies
Theorem 3
(Flux formulation) Under the assumptions of Proposition 2, denote by \((\underline{\varvec{u}}_{h},p_h)\in \underline{\varvec{U}}_{h,0}^{k}\times P_{h}^{k}\) the unique solution of problem (31) and, for all \(T\in \mathcal {T}_{h}\) and all \(F\in \mathcal {F}_{T}\), define the numerical normal trace of the momentum flux as
with consistency and stabilization contributions given by, respectively,
Then, for all \(T\in \mathcal {T}_{h}\) the following local balances hold: For all \(\varvec{v}_{T}\in \mathbb {P}^{k}(T)^d\) and all \(q_T\in \mathbb {P}^{k}(T)\),
where \(p_T:=p_{h|T}\) and, for any interface \(F\in \mathcal {F}_{h}^{\mathrm{i}}\) such that \(F\subset \partial T_1\cap \partial T_2\) for distinct mesh elements \(T_1,T_2\in \mathcal {T}_{h}\), the numerical traces of the flux are continuous in the sense that
Proof
(i) Local momentum balance. Let \(\underline{\varvec{v}}_{h}\in \underline{\varvec{U}}_{h,0}^{k}\) be fixed. Expanding \(\mathrm {a}_{\nu ,h}\) according to its definition (11) then using, for all \(T\in \mathcal {T}_{h}\), the definition (9) of \(\varvec{r}_{T}^{k+1}\underline{\varvec{v}}_{T}\) with \({\varvec{w}}=\varvec{r}_{T}^{k+1}\underline{\varvec{u}}_{T}\) and the definition (68) of the boundary residual operator with \(\underline{\varvec{w}}_{T}=\underline{\varvec{u}}_{T}\) and \(\underline{\varvec{\alpha }}_{\partial T}=\underline{\varvec{\varDelta }}_{\partial T}^k\underline{\varvec{v}}_{T}\), we can write
where the viscous stabilization was reformulated using (67) then (68). In a similar way, expanding \(\mathrm {a}_{\varvec{\beta },\mu ,h}\) then, for all \(T\in \mathcal {T}_{h}\), \(\varvec{G}_{\varvec{\beta },T}^{k}\underline{\varvec{v}}_{T}\) according to their respective definitions (17) and (16), we have that
Finally, recalling the definition (23) of \(\mathrm {b}_h\) and (21) of the discrete divergence operator, we have that
Plugging the above expressions into (31a), we conclude that
Selecting now \(\underline{\varvec{v}}_{h}\) such that \(\varvec{v}_{T}\) spans \(\mathbb {P}^{k}(T)^d\) for a selected mesh element \(T\in \mathcal {T}_{h}\) while \(\varvec{v}_{T'} = \varvec{0}\) for all \(T'\in \mathcal {T}_{h}\setminus \{T\}\) and \(\varvec{v}_{F} = \varvec{0}\) for all \(F\in \mathcal {F}_{h}\), we obtain the local momentum balance (69a). On the other hand, selecting \(\underline{\varvec{v}}_{h}\) such that \(\varvec{v}_{T} = \varvec{0}\) for all \(T\in \mathcal {T}_{h}\), \(\varvec{v}_{F}\) spans \(\mathbb {P}^{k}(F)^d\) for a selected interface \(F\in \mathcal {F}_{h}^{\mathrm{i}}\) such that \(F\subset \partial T_1\cap \partial T_2\) for distinct mesh elements \(T_1,T_2\in \mathcal {T}_{h}\), and \(\varvec{v}_{F'} = \varvec{0}\) for all \(F'\in \mathcal {F}_{h}\setminus \{F\}\) yields the flux continuity (70) after observing that \(\left( \varvec{\varPhi }_{T_1F}+\varvec{\varPhi }_{T_2F}\right) \in \mathbb {P}^{k}(F)^d\).
(ii) Local mass balance. We start by observing that (31b) holds in fact for all \(q_h\in \mathbb {P}^{k}(\mathcal {T}_{h})\), not necessary with zero mean value on \(\varOmega \). This can be easily checked using the definition (23) of \(\mathrm {b}_h\) and (21) of the discrete divergence to write
where we have denoted by \(\mathcal {T}_{F}\) the set of elements that share F and the conclusion follows from the single-valuedness of \(\varvec{u}_{F}\) for any \(F\in \mathcal {F}_{h}^{\mathrm{i}}\) and the fact that \(\varvec{u}_{F}=\varvec{0}\) for any \(F\in \mathcal {F}_{h}^{\mathrm{b}}\). In order to prove the local mass balance (69b), it then suffices to take \(q_h\) in (31b) equal to \(q_T\) inside T and zero elsewhere. \(\square \)
Rights and permissions
About this article
Cite this article
Aghili, J., Di Pietro, D.A. An Advection-Robust Hybrid High-Order Method for the Oseen Problem. J Sci Comput 77, 1310–1338 (2018). https://doi.org/10.1007/s10915-018-0681-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0681-2
Keywords
- Hybrid high-order methods
- Oseen equations
- Incompressible flows
- Polyhedral meshes
- Advection-robust error estimates