[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Unconditional Convergence in Maximum-Norm of a Second-Order Linearized Scheme for a Time-Fractional Burgers-Type Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study linearized finite difference scheme for a time-fractional Burgers-type equation in this paper. A linearized scheme with second-order accuracy in time and space is proposed. The advantage of the scheme is that iterative method is not required for finding the approximated solutions. Nonlinearity involving derivatives causes difficulties in analysis. By refined estimates of our previous study, we show that the scheme unconditionally converges with second-order in maximum-norm. The theoretical results are justified by numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burgers, J.M.: A mathematical model illustrating the theory of turbulence. In: Advances in Applied Mechanics, pp. 171–199. Academic Press Inc., New York (1948)

  2. Sugimoto, N.: Generalized Burgers equation and fractional calculus. In: Nonlinear Wave Motion, Longman Scientific and Technical (1989)

  3. Jerome, S., Oldham, K.B.: The Fractional Calculus. Academic Press Inc, London (1974)

    MATH  Google Scholar 

  4. Djordjevica, V.D., Atanackovic, T.M.: Similarity solutions to nonlinear heat conduction and Burgers/korteweg–deVries fractional equations. J. Comput. Appl. Math. 222(2), 701–714 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Garra, R.: Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rocks. Phys. Rev. E. 84(3), 036605 (2011)

    Article  Google Scholar 

  6. Wang, Q.: Numerical solutions for fractional kdv-burgers equation by Adomian decomposition method. Appl. Math. Comput. 182(2), 1048–1055 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Inc, M.: The approximate and exact solutions of the space- and time-fractional Burgers equation with initial conditions by variational iteration method. J. Math. Anal. Appl. 345, 476–484 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. El-Danaf, T.S., Hadhoud, A.R.: Parametric spline functions for the solution of the one time fractional Burgers equation. Appl. Math. Model. 36, 4557–4564 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deng, W.H.: Numerical algorithm for the time fractional Fokker–Planck equation. J. Comput. Phys. 227, 1510–1522 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, G.H., Alikhanov, A.A., Sun, Z.Z.: The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-Order fractional sub-diffusion equations. J. Sci. Comput. 73, 93–121 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51, 445–466 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Numer. Anal. 38, A146–A170 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liao, H.L., Lyu, P., Vong, S., Zhao, Y.: Stability of fully discrete schemes with interpolation-type fractional formulas for distributed-order subdiffusion equations. Numer. Algorithms 75, 845–878 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liao, H.L., Zhao, Y., Teng, X.H.: A weighted ADI scheme for subdiffusion equations. J. Sci. Comput. 69, 1144–1164 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vong, S., Lyu, P., Chen, X., Lei, S.L.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann–Liouville derivatives. Numer. Algorithms 72, 195–210 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vong, S., Lyu, P., Wang, Z.: A compact difference scheme for fractional sub-diffusion equations with the spatially variable coefficient under Neumann boundary bonditions. J. Sci. Comput. 66, 725–739 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vong, S., Wang, Z.: A high order compact finite difference scheme for time fractional Fokker–Planck equations. Appl. Math. Lett. 43, 38–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhou, H., Tian, W.Y., Deng, W.H.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhao, Z., Jin, X.Q., Lin, M.M.: Preconditioned iterative methods for space-time fractional advection-diffusion equations. J. Comput. Phys. 319, 266–279 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vong, S., Wang, Z.: A high-order compact scheme for the nonlinear fractional Klein–Gordon equation. Numer. Methods Part. Differ. Equ. 31, 706–722 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, D., Zhang, C., Ran, M.: A linear finite difference scheme for generalized time fractional Burgers equation. Appl. Math. Model. 40, 6069–6081 (2016)

    Article  MathSciNet  Google Scholar 

  31. Hao, Z.P., Sun, Z.Z.: A linearized high-order difference scheme for the fractional Ginzburg-Landau equation. Numer. Methods Part. Differ. Equ. 33(1), 105–124 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhao, X., Sun, Z.Z., Hao, Z.P.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)

    Article  MATH  Google Scholar 

  33. Wang, D., Xiao, A., Yang, W.: A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations. J. Comput. Phys. 272, 644–655 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ran, M., Zhang, C.: A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations. Commun. Nonlinear Sci. Numer. Simul. 41, 64–83 (2016)

    Article  MathSciNet  Google Scholar 

  35. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein–Gordon equations. Eng. Anal. Bound. Elem. 50, 412–434 (2015)

    Article  MathSciNet  Google Scholar 

  36. Lyu, P., Vong, S.: A linearized second-order scheme for nonlinear time fractional Klein–Gordon type equations. Numer. Algorithms (2017). https://doi.org/10.1007/s11075-017-0385-y

  37. Liao, H.L., Zhao, Y., Teng, X.H.: Convergence of a weighted compact ADI scheme for fractional diffusion-wave equations, submitted

  38. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Diferential Equations. Springer, Berlin (1997)

    Google Scholar 

  39. Sun, Z.Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the two anonymous reviewers for careful reading on our manuscript. Their valuable comments, particularly the suggestions on the comparison of the proposed scheme with its two level variant (on the diffusion term), have inspired us to improve significantly the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pin Lyu.

Additional information

S. Vong: This research is supported by the Macao Science and Technology Development Fund 010/2015/A and 050/2017/A and the Grant MYRG2017-00098-FST from University of Macau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vong, S., Lyu, P. Unconditional Convergence in Maximum-Norm of a Second-Order Linearized Scheme for a Time-Fractional Burgers-Type Equation. J Sci Comput 76, 1252–1273 (2018). https://doi.org/10.1007/s10915-018-0659-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0659-0

Keywords

Mathematics Subject Classification

Navigation