Abstract
We propose a new formulation of explicit time integration for the hybridizable discontinuous Galerkin (HDG) method in the context of the acoustic wave equation based on the arbitrary derivative approach. The method is of arbitrary high order in space and time without restrictions such as the Butcher barrier for Runge–Kutta methods. To maintain the superconvergence property characteristic for HDG spatial discretizations, a special reconstruction step is developed, which is complemented by an adjoint consistency analysis. For a given time step size, this new method is twice as fast compared to a low-storage Runge–Kutta scheme of order four with five stages at polynomial degrees between two and four. Several numerical examples are performed to demonstrate the convergence properties, reveal dispersion and dissipation errors, and show solution behavior in the presence of material discontinuities. Also, we present the combination of local time stepping with h-adaptivity on three-dimensional meshes with curved elements.
Similar content being viewed by others
References
Cohen, G.C.: Higher-Order Numerical Methods for Transient Wave Equations. Springer, Berlin (2002)
Hesthaven, J.S. Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Application, Vol. 54 of Texts in Applied Mathematics, Springer, Berlin (2008)
Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic equations. SIAM J. Numer. Anal. 47(2), 1139–1365 (2009). https://doi.org/10.1137/070706616
Nguyen, N.C., Peraire, J., Cockburn, B.: High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. J. Comput. Phys. 230, 3695–3718 (2011). https://doi.org/10.1016/j.jcp.2011.01.035
Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput. 81(279), 1327–1353 (2011). https://doi.org/10.1090/S0025-5718-2011-02550-0
Cockburn, B., Quenneville-Belair, V.: Uniform-in-time superconvergence of the HDG methods for the acoustic wave equation. Math. Comput. 83(285), 65–85 (2013). https://doi.org/10.1090/S0025-5718-2013-02743-3
Kronbichler, M., Schoeder, S., Müller, C., Wall, W.: Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation. Int. J. Numer. Methods Eng. 106(9), 712–739 (2016). https://doi.org/10.1002/nme.5137
Stanglmeier, M., Nguyen, N., Peraire, J., Cockburn, B.: An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation. Comput. Methods Appl. Mech. Eng. 300, 748–769 (2016). https://doi.org/10.1016/j.cma.2015.12.003
Kronbichler, M., Kormann, K.: A generic interface for parallel cell-based finite element operator application. Comput. Fluids 63, 135–147 (2012). https://doi.org/10.1016/j.compfluid.2012.04.012
Orszag, S.A.: Spectral methods for problems in complex geometries. J. Comput. Phys. 37, 70–92 (1980). https://doi.org/10.1016/0021-9991(80)90005-4
Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Springer, New York (2009)
Schwartzkopff, T., Munz, C.D., Toro, E.F.: ADER: A high-order approach for linear hyperbolic systems in 2D. J. Sci. Comput. 17(1), 231–240 (2002). https://doi.org/10.1023/A:1015160900410
Schwartzkopff, T., Dumbser, M., Munz, C.-D.: Fast high order ADER schemes for linear hyperbolic equations. J. Comput. Phys. 197, 532–539 (2004). https://doi.org/10.1016/j.jcp.2003.12.007
Dumbser, M., Käser, M.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—II. The three-dimensional isotropic case. Geophys. J. Int. 167, 319–336 (2006). https://doi.org/10.1111/j.1365-246X.2006.03120.x
Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. J. Comput. Phys. 314, 824–862 (2016). https://doi.org/10.1016/j.jcp.2016.02.015
Dumbser, M., Schwartzkopff, T., Munz, C.-D.: Arbitrary high order finite volume schemes for linear wave propagation. In: Krause, E., Shokin, Y., Resch, M., Shokina, N. (eds.) Computational Science and High Performance Computing II: The 2nd Russian-German Advanced Research Workshop, Stuttgart, Germany, March 14 to 16, 2005, pp. 129–144. Springer, Berlin (2006). https://doi.org/10.1007/3-540-31768-6_11
Guo, W., Qiu, J.-M., Qiu, J.: A new Lax–Wendroff discontinuous Galerkin method with superconvergence. J. Sci. Comput. 65(1), 299–326 (2015). https://doi.org/10.1007/s10915-014-9968-0
Winters, A.R., Kopriva, D.A.: High-order local time stepping on moving DG spectral element meshes. J. Sci. Comput. 58(1), 176–202 (2014). https://doi.org/10.1007/s10915-013-9730-z
Piperno, S.: Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems. ESAIM Math. Model. Numer. Anal. 40(5), 815–841 (2005). https://doi.org/10.1051/m2an:2006035
Gassner, G., Hindenlang, G., Munz, C.-D.: A Runge–Kutta based discontinuous Galerkin method with time accurate local time stepping. In: Wang, Z.J. (ed.) Adaptive High-Order Methods in Computational Fluid Dynamics, vol. 2, pp. 95–118. World Scientific Publishing Co. Pte. Ltd., Singapore (2011)
Grote, M., Mehlin, M., Mitkova, T.: Runge–Kutta-based explicit local time-stepping methods for wave propagation. SIAM J. Sci. Comput. 37(2), A747–A775 (2015). https://doi.org/10.1137/140958293
Dumbser, M., Käser, M., Toro, E.F.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—V. Local time stepping and \(p\)-adaptivity. Geophys. J. Int. 171, 695–717 (2007). https://doi.org/10.1111/j.1365-246X.2007.03427.x
Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31, 629–651 (1977). https://doi.org/10.1090/S0025-5718-1977-0436612-4
Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35, 177–219 (2000)
Kubatko, E.J., Yeager, B.A., Ketcheson, D.I.: Optimal strong-stability-preserving Runge–Kutta time discretizations for discontinuous Galerkin methods. J. Sci. Comput. 60, 313–344 (2014). https://doi.org/10.1007/s10915-013-9796-7
Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods. Wiley, New York (1987)
Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100(1), 32–74 (1928). https://doi.org/10.1007/BF01448839
Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. Oxford University Press, Oxford (2005)
Krivodonova, L., Ruibin, Q.: An analysis of the spectrum of the discontinuous Galerkin method. Appl. Numer. Math. 64, 1–18 (2013). https://doi.org/10.1016/j.apnum.2012.07.008
Yakovlev, S., Moxey, D., Kirby, R., Sherwin, S.: To CG or to HDG: a comparative study in 3D. J. Sci. Comput. 67(1), 192–220 (2016). https://doi.org/10.1007/s10915-015-0076-6
Hartmann, R.: Adjoint consistency analysis of discontinuous Galerkin discretizations. SIAM J. Numer. Anal. 45(6), 2671–2696 (2007). https://doi.org/10.1137/060665117
Yang, H., Li, F., Qiu, J.: Dispersion and dissipation errors of two fully discrete discontinuous Galerkin methods. J. Sci. Comput. 55(3), 552–574 (2013). https://doi.org/10.1007/s10915-012-9647-y
Ainsworth, M.: Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods. J. Comput. Phys. 198, 106–130 (2004). https://doi.org/10.1016/j.jcp.2004.01.004
Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier, M., Turcksin, B., Wells, D.: The deal. II library, version 8.4.0. J. Numer. Math. 24(3), 135–141 (2016). https://doi.org/10.1515/jnma-2016-1045
Bangerth, W., Burstedde, C., Heister, T., Kronbichler, M.: Algorithms and data structures for massively parallel generic finite element codes. ACM Trans. Math. Softw. 38(2), 14:1–14:28 (2011). http://dx.doi.org/10.1145/2049673.2049678
Acknowledgements
The authors acknowledge support by the German Research Foundation (DFG) through the project “High-order discontinuous Galerkin for the exa-scale” (ExaDG) within the priority program “Software for Exascale Computing” (SPPEXA), Grant Agreement Nos. KR4661/2-1 and WA1521/18-1.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schoeder, S., Kronbichler, M. & Wall, W.A. Arbitrary High-Order Explicit Hybridizable Discontinuous Galerkin Methods for the Acoustic Wave Equation. J Sci Comput 76, 969–1006 (2018). https://doi.org/10.1007/s10915-018-0649-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0649-2
Keywords
- Hybridizable discontinuous Galerkin methods
- Arbitrary high-order
- Local time stepping
- Superconvergence
- Adjoint consistency
- Acoustics