Abstract
We propose a numerical strategy to generate a sequence of anisotropic meshes and select appropriate stabilization parameters simultaneously for linear SUPG method solving two dimensional convection-dominated convection–diffusion equations. Since the discretization error in a suitable norm can be bounded by the sum of interpolation error and its variants in different norms, we replace them by some terms which contain the Hessian matrix of the true solution, convective field, and the geometric properties such as directed edges and the area of triangles. Based on this observation, the shape, size and equidistribution requirements are used to derive corresponding metric tensor and stabilization parameters. Numerical results are provided to validate the stability and efficiency of the proposed numerical strategy.
Similar content being viewed by others
References
Agouzal, A., Yuri V, V.: Minimization of gradient errors of piecewise linear interpolation on simplicial meshes. Comput. Methods Appl. Mech. Eng. 199(33), 2195–2203 (2010)
Apel, T., Lube, G.: Anisotropic mesh refinement in stabilized Galerkin methods. Numer. Math. 74(3), 261–282 (1996)
Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4), 173–199 (2001)
Bochev, P., Perego, M., Peterson, K.: Formulation and analysis of a parameter-free stabilized finite element method. SIAM J. Numer. Anal. 53(5), 2363–2388 (2015)
Bochev, P., Peterson, K.: A parameter-free stabilized finite element method for scalar advection–diffusion problems. Cent. Eur. J. Math. 11(8), 1458–1477 (2013)
Brezzi, F., Leopoldo P, F., Alessandro, R.: Further considerations on residual-free bubbles for advective–diffusive equations. Comput. Methods Appl. Mech. Eng. 166(1), 25–33 (1998)
Brezzi, F., Russo, A.: Choosing bubbles for advection–diffusion problems. Math. Models Methods Appl. Sci. 4(04), 571–587 (1994)
Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1), 199–259 (1982)
Cangiani, A., Süli, E.: The residual-free-bubble finite element method on anisotropic partitions. SIAM J. Numer. Anal. 45(4), 1654–1678 (2007)
Chen, L., Sun, P., Jinchao, X.: Optimal anisotropic meshes for minimizing interpolation errors in \(l^p\)-norm. Math. Comput. 76(257), 179–204 (2007)
Codina, R., Oñate, E., Cervera, M.: The intrinsic time for the streamline upwind/Petrov–Galerkin formulation using quadratic elements. Comput. Methods Appl. Mech. Eng. 94(2), 239–262 (1992)
Dörfler, W., Nochetto, R.H.: Small data oscillation implies the saturation assumption. Numer. Math. 91(1), 1–12 (2002)
Farrell, P., Hegarty, A., Miller, J.M., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. CRC Press, Boca Raton (2000)
Formaggia, L., Micheletti, S., Perotto, S.: Anisotropic mesh adaptation in computational fluid dynamics: application to the advection–diffusion–reaction and the Stokes problems. Appl. Numer. Math. 51(4), 511–533 (2004)
Franca, L.P., Frey, S.L., Hughes, T.J.R.: Stabilized finite element methods: I. Application to the advective–diffusive model. Comput. Methods Appl. Mech. Eng. 95(2), 253–276 (1992)
Franca, L.P., Madureira, A.L.: Element diameter free stability parameters for stabilized methods applied to fluids. Comput. Methods Appl. Mech. Eng. 105(3), 395–403 (1993)
Hachem, E., Jannoun, G., Veysset, J., Coupez, T.: On the stabilized finite element method for steady convection-dominated problems with anisotropic mesh adaptation. Appl. Math. Comput. 232, 581–594 (2014)
Hecht, F., Ohtsuka, K., Pironneau, O.: Freefem++ Manual. Université Pierre et Marie Curie. http://www.freefem.org/ff++/index.htm
Hecht, F.: Bamg: bidimensional anisotropic mesh generator. INRIA report (1998)
Hu, G., Qiao, Z., Tang, T.: Moving finite element simulations for reaction–diffusion systems. Adv. Appl. Math. Mech. 4(03), 365–381 (2012)
Huang, W.: Metric tensors for anisotropic mesh generation. J. Comput. Phys. 204(2), 633–665 (2005)
Hughes, T.J.R.: Recent progress in the development and understanding of supg methods with special reference to the compressible Euler and Navier–Stokes equations. Int. J. Numer. Methods Fluids 7(11), 1261–1275 (1987)
Hughes, T.J.R., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion. Finite Elem. Methods Convect. Domin. Flows 34, 19–35 (1979)
Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: Viii. The Galerkin/least-squares method for advective–diffusive equations. Comput. Methods Appl. Mech. Eng. 73(2), 173–189 (1989)
John, V.: A numerical study of a posteriori error estimators for convection–diffusion equations. Comput. Methods Appl. Mech. Eng. 190(5), 757–781 (2000)
John, V., Knobloch, P.: A computational comparison of methods diminishing spurious oscillations in finite element solutions of convection–diffusion equations. In: Proceedings of the International Conference Programs and Algorithms of Numerical Mathematics, vol. 13, pp. 122–136 (2006)
John, V., Knobloch, P.: On spurious oscillations at layers diminishing (sold) methods for convection–diffusion equations: part I-a review. Comput. Methods Appl. Mech. Eng. 196(17), 2197–2215 (2007)
Li, R., Tang, T., Zhang, P.: Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170(2), 562–588 (2001)
Linß, T.: Anisotropic meshes and streamline-diffusion stabilization for convection–diffusion problems. Commun. Numer. Methods Eng. 21(10), 515–525 (2005)
Loseille, A., Alauzet, F.: Continuous mesh framework part I: well-posed continuous interpolation error. SIAM J. Numer. Anal. 49(1), 38–60 (2011)
Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabilisations applied to the oseen problem. ESAIM: Math. Model. Numer. Anal.-Modél. Math. Anal. Numér. 41(4), 713–742 (2007)
Matthies, G., Tobiska, L.: Local projection type stabilization applied to inf-sup stable discretizations of the oseen problem. IMA J. Numer. Anal. 35(1), 239–269 (2015)
Micheletti, S., Perotto, S., Picasso, M.: Stabilized finite elements on anisotropic meshes: a priori error estimates for the advection–diffusion and the Stokes problems. SIAM J. Numer. Anal. 41(3), 1131–1162 (2003)
Mittal, S.: On the performance of high aspect ratio elements for incompressible flows. Comput. Methods Appl. Mech. Eng. 188(1), 269–287 (2000)
Mizukami, A., Hughes, T.J.R.: A petrov-galerkin finite element method for convection-dominated flows: an accurate upwinding technique for satisfying the maximum principle. Comput. Methods Appl. Mech. Eng. 50(2), 181–193 (1985)
Nadler, E.: Piecewise linear best \(l_2\) approximation on triangulations. In: Chui, C. K., Schumacher, L. L., ward, J. D. (eds.) Approximation Theory V: Proceedings Fifth International Symposium on Approximation Theory, pp. 499–502. Academic Press, New York (1986)
Nävert, U.: A Finite Element Method for Convection–Diffusion Problems. Chalmers Tekniska Högskola/Göteborgs Universitet, Department of Computer Science (1982)
Nguyen, H., Gunzburger, M., Lili, J., Burkardt, J.: Adaptive anisotropic meshing for steady convection-dominated problems. Comput. Methods Appl. Mech. Eng. 198(37), 2964–2981 (2009)
Picasso, M.: An anisotropic error indicator based on Zienkiewicz–Zhu error estimator: application to elliptic and parabolic problems. SIAM J. Sci. Comput. 24(4), 1328–1355 (2003)
Principe, J., Codina, R.: On the stabilization parameter in the subgrid scale approximation of scalar convection–diffusion–reaction equations on distorted meshes. Comput. Methods Appl. Mech. Eng. 199(21), 1386–1402 (2010)
Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection–Diffusion–Reaction and Flow Problems, vol. 24. Springer, Berlin (2008)
Stynes, M.: Steady-state convection–diffusion problems. Acta Numer. 14, 445–508 (2005)
Sun, P., Chen, L., Jinchao, X.: Numerical studies of adaptive finite element methods for two dimensional convection-dominated problems. J. Sci. Comput. 43(1), 24–43 (2010)
Tang, H.-Z., Tang, T., Zhang, P.: An adaptive mesh redistribution method for nonlinear Hamilton–Jacobi equations in two-and three-dimensions. J. Comput. Phys. 188(2), 543–572 (2003)
Tezduyar, T.E., Mittal, S., Ray, S.E., Shih, R.: Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput. Methods Appl. Mech. Eng. 95(2), 221–242 (1992)
Tezduyar, T.E., Park, Y.J.: Discontinuity-capturing finite element formulations for nonlinear convection–diffusion–reaction equations. Comput. Methods Appl. Mech. Eng. 59(3), 307–325 (1986)
Tobiska, L., Verfürth, R.: Robust a posteriori error estimates for stabilized finite element methods. IMA J. Numer. Anal. 35(4), 1652–1671 (2015)
Xie, H., Yin, X.: Metric tensors for the interpolation error and its gradient in \(l^p\) norm. J. Comput. Phys. 256, 543–562 (2014)
Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineerng analysis. Int. J. Numer. Meth. Eng. 24(2), 337–357 (1987)
Acknowledgements
Yana Di is supported in part by the National Natural Science Foundation of China (91630208, 11771437). Hehu Xie is supported in part by the National Natural Science Foundation of China (91730302, 11771434, 91330202, 11371026, 11001259, 11031006, 2011CB309703) and Science Challenge Project (TZ2016002). Xiaobo Yin is supported by National Natural Science Foundation of China (11671165, 91630201), Program for Changjiang Scholars and Innovative Research Team in University \(\sharp \) IRT13066, and self-determined research funds of Central China Normal University (CCNU16A02039). The authors would like to thank Professor Lutz Tobiska for his valuable suggestion to this work. We are also thankful to anonymous reviewers for their remarks and suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Yana Di and Hehu Xie are supported in part by the National Center for Mathematics and Interdisciplinary Science, CAS.
Rights and permissions
About this article
Cite this article
Di, Y., Xie, H. & Yin, X. Anisotropic Meshes and Stabilization Parameter Design of Linear SUPG Method for 2D Convection-Dominated Convection–Diffusion Equations. J Sci Comput 76, 48–68 (2018). https://doi.org/10.1007/s10915-017-0610-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-017-0610-9