[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Unbalanced and Partial \(L_1\) Monge–Kantorovich Problem: A Scalable Parallel First-Order Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a new algorithm to solve the unbalanced and partial \(L_1\)-Monge–Kantorovich problems. The proposed method is a first-order primal-dual method that is scalable and parallel. The method’s iterations are conceptually simple, computationally cheap, and easy to parallelize. We provide several numerical examples solved on a CUDA GPU, which demonstrate the method’s practical effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barrett, J., Prigozhin, L.: Partial \(L^1\) Monge–Kantorovich problem: variational formulation and numerical approximation. Interfaces Free Bound. 11(2), 201–238 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benamou, J.-D., Carlier, G., Hatchi, R.: A numerical solution to Monge’s problem with a Finsler distance as cost. M2AN (2016)

  4. Caffarelli, L., McCann, R.: Free boundaries in optimal transport and Monge–Ampere obstacle problems. Ann. Math. 171, 673–730 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chizat, L., Peyre, G., Schmitzer, B., Vialard, F.-X.: Unbalanced optimal transport: geometry and Kantorovich formulation (2015). arXiv:1508.05216

  7. Chizat, L., Schmitzer, B., Peyre, G., Vialard, F.-X.: An interpolating distance between optimal transport and Fischer-Rao. Found. Comput. Math. https://doi.org/10.1007/s10208-016-9331-y (2016)

  8. Evans, L., Gangbo, W.: Differential equations methods for the Monge–Kantorovich mass transfer problem. Memoirs of AMS, no 653, vol. 137, (1999)

  9. Figalli, A.: The optimal partial transport problem. Arch. Ration. Mech. Anal. 195(2), 533560 (2010)

    Article  MathSciNet  Google Scholar 

  10. Hanin, L.G.: Kantorovich–Rubinstein norm and its application in the theory of Lipschitz spaces. Proc. Am. Math. Soc. 115(2), 345–352 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imaging Sci. 5(1), 119–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  13. Li, W.: A study of stochastic differential equations and Fokker–Planck equations with applications. Ph.D. thesis

  14. Li, W., Ryu, E.K., Osher, S., Yin, W., Gangbo, W.: A parallel method for earth movers distance. J. Sci. Comput. https://doi.org/10.1007/s10915-017-0529-1 (2017)

  15. Ling, H., Okada, K.: An efficient earth movers distance algorithm for robust histogram comparison. PAMI 29, 840–853 (2007)

    Article  Google Scholar 

  16. Luitjens, J.: Faster parallel reductions on Kepler. https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/. Accessed 15 July 2017

  17. Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., Virieux, J.: Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion. Geophys. J. Int. 205(1), 345–377 (2016)

    Article  MATH  Google Scholar 

  18. Piccoli, B., Rossi, F.: On properties of the generalized Wasserstein distance. Arch. Ration. Mech. Anal. 222(3), 1339–1365 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Piccoli, B., Rossi, F.: Generalized Wasserstein distance and its application to transport equations with source. Arch. Ration. Mech. Anal. 211(1), 335–358 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pratelli, A.: Equivalence between some definitions for the optimal mass transport problem and for the transport density on manifolds. Ann. Mat. Pura Appl. 184(2), 215–238 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: International Conference on Computer Vision, IEEE, pp. 1762–1769 (2011)

  22. Rockafellar, R.T.: Conjugate Duality and Optimization. Society for Industrial and Applied Mathematics, Philadelphia (1974)

    Book  MATH  Google Scholar 

  23. Rubner, Y., Tomasi, C., Guibas, L.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  24. Ryu, E.K., Boyd, S.: Primer on monotone operator methods. Appl. Comput. Math. 15(1), 3–43 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Villani, C.: Topics in Optimal Transportation, vol. 58. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  26. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for \(\ell _1\)-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Wilfrid Gangbo for many fruitful and inspirational discussions on the related topics. The Titan Xp used for this research was donated by the NVIDIA Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuchen Li.

Additional information

This work is partially supported by ONR Grants N000141410683, N000141210838 and DOE Grant DE-SC00183838.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, E.K., Li, W., Yin, P. et al. Unbalanced and Partial \(L_1\) Monge–Kantorovich Problem: A Scalable Parallel First-Order Method. J Sci Comput 75, 1596–1613 (2018). https://doi.org/10.1007/s10915-017-0600-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0600-y

Keywords

Navigation