[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Computing the Level Set Convex Hull

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Quasiconvex (QC) functions are functions whose level sets are convex. The quasiconvex envelope (QCE) of a given function, g, is the maximal QC function below g. The QCE provides a level set representation for the convex hull of every level set of a given function. We present a nonlocal line solver for computing the QCE of a given function. The algorithm is based on solving the one dimensional problem on lines, which can be done by a fast marching or sweeping method. Convergence of the algorithm is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Avriel, M., Diewert, W.E., Schaible, S., Zang, I: Generalized Concavity. Springer (reprinted by SIAM classics) (1988)

  2. Arrow, K.J., Enthoven, A.C.: Quasi-concave programming. Econom. J. Econom. Soc. 29, 779–800 (1961)

  3. Barron, E.N., Goebel, R., Jensen, R.R.: Functions which are quasiconvex under linear perturbations. SIAM J. Optim. 22(3), 1089–1108 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barron, E.N., Goebel, R., Jensen, R.R.: The quasiconvex envelope through first-order partial differential equations which characterize quasiconvexity of nonsmooth functions. Discrete Contin. Dyn. Syst. Ser. B 17(6), 1693–1706 (2012)

  5. Barron, E., Goebel, R., Jensen, R.: Quasiconvex functions and nonlinear pdes. Trans. Am. Math. Soc. 365(8), 4229–4255 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barron, E.N., Jensen, R.R.: A uniqueness result for the quasiconvex operator and first order PDEs for convex envelopes. Annales de l’Institut Henri Poincare (C) Non Linear Anal. 31(2), 203–215 (2014)

  7. Carlier, G., Galichon, A.: Exponential convergence for a convexifying equation. ESAIM Control Optim. Calc. Var. 18(03), 611–620 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L.A., Spruck, J.: Convexity properties of solutions to some classical variational problems. Commun. Partial Differ. Equ. 7(11), 1337–1379 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colesanti, A., Salani, P.: Quasi–concave envelope of a function and convexity of level sets of solutions to elliptic equations. Mathematische Nachrichten 258(1), 3–15 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Firey, W.J.: Shapes of worn stones. Mathematika 21(01), 1–11 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ishii, H., Mikami, T.: A level set approach to the wearing process of a nonconvex stone. Calc. Var. Partial Differ. Equ. 19(1), 53–93 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kawohl, B.: Rearrangements and convexity of level sets in PDE. Lect. Notes Math. 1150, 1–134 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. McAdams, A., Osher, S., Teran, J.: Crashing waves, awesome explosions, turbulent smoke, and beyond: applied mathematics and scientific computing in the visual effects industry. Not. AMS 57(5), 614–623 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Malladi, R., Sethian, J.A.: Image processing via level set curvature flow. Proc. Natl. Acad. Sci. 92(15), 7046–7050 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Oberman, A.M.: A convergent monotone difference scheme for motion of level sets by mean curvature. Numer. Math. 99(2), 365–379 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Oberman, A.M.: Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44(2), 879–895 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  17. Oberman, A.M.: The convex envelope is the solution of a nonlinear obstacle problem. Proc. Am. Math. Soc. 135, 1689–1694 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Oberman, A.M.: Computing the convex envelope using a nonlinear partial differential equation. Math. Models Methods Appl. Sci. 18(5), 759–780 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Oberman, A.M., Ruan, Y.: A partial differential equation for the rank one convex envelope. Submitted (2016)

  20. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  22. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tsai, Y.-H.R., Cheng, L.-T., Osher, S., Zhao, H.-K.: Fast sweeping algorithms for a class of Hamilton–Jacobi equations. SIAM J. Numer. Anal. 41(2), 673–694 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vese, L.: A method to convexify functions via curve evolution. Commun. Partial Differ. Equ. 24(9–10), 1573–1591 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhao, H.: A fast sweeping method for eikonal equations. Math. Comput. 74(250), 603–627 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam M. Oberman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, B., Oberman, A.M. Computing the Level Set Convex Hull. J Sci Comput 75, 26–42 (2018). https://doi.org/10.1007/s10915-017-0522-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0522-8

Keywords

Mathematics Subject Classification

Navigation