[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Galerkin Spectral Approximation of Elliptic Optimal Control Problems with \(H^1\)-Norm State Constraint

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study an elliptic optimal control problem with \(H^1\)-norm state constraint. The control problem is approximated by the Galerkin spectral method, which can provide high-order accuracy and fast convergence rate. The optimality conditions and a priori error estimates are presented. A reliable a posteriori error estimator is investigated, which is helpful for developing adaptive strategy in the spectral method. Some numerical tests confirm the error estimates and illustrate the performance of the indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Benedix, Olaf, Vexler, Boris: A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints. Comput. Optim. Appl. 44(1), 3–25 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergounioux, M., Kunisch, K.: On the structure of Lagrange multipliers for state-constrained optimal control problems. Syst. Control Lett. 48, 169–176 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergounioux, M., Kunisch, K.: Augmented Lagrangian techniques for elliptic state constrained optimal control problems. SIAM J. Control Optim. 35, 1524–1543 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergounioux, M., Kunisch, K.: Primal-dual strategy for state-constrained optimal control problems. Comput. Optim. Appl. 22, 193–224 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24(6), 1309–1318 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31(4), 993–1006 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Casas, E.: Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints, ESAIM. Control Optim. Calc. Var. 8, 345–374 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casas, E., Mateos, M., Raymond, Jean-Pierre: Error estimates for the numerical approximation of a distributed control problem for the steady–state Navier-Stokes equations. SIAM J. Control Optim. 46, 952–982 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer-Verlag, Berlin (1988)

    Book  MATH  Google Scholar 

  10. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, Amsterdam (1983)

    MATH  Google Scholar 

  11. Chen, Y., Huang, F., YI, N., Liu, W.B.: A Legendre-Galerkin spectral method for optimal control problems governed by Stokes equations. SIAM J. Numer. Anal. 49(4), 1625–1648 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Y., Yi, N., Liu, W.B.: A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations. SIAM J. Numer. Anal. 46(5), 2254–2275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. De Los Reyes, J.C., Griesse, R.: State-constrained optimal control of the three-dimensionl stationary Navier–Stokes equations. J. Math. Anal. Appl. 343, 257–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. De Los Reyes, J.C., Kunisch, K.: A semi-smooth Newton method for regularized state-constrained optimal control of the Navier–Stokes equations. Computing 78, 287–309 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gunzburger, M.D., Hou, L.S.: Finite-dimensional approximation of a class of constrained nonlinear optimal control problems. SIAM J. Control Optim. 34(3), 1001–1043 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gunzburger, M.D., Hou, L.S., Svobodny, T.P.: Boundary velocity control of incompressible folw with an application to viscous drag reduction. SIAM J. Control Optim. 30, 167–181 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gong, W., Yan, N.: A mixed finite element scheme for optimal control problems with pointwise state constraints. J. Sci. Comput. 46, 182–203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications, vol. 23. Springer, Berlin (2009)

    MATH  Google Scholar 

  19. Hoppe, R.H.W., Kieweg, M.: A posteriori error estimation of finite element approximations of pointwise state constrained distributed control problems. J. Numer. Math. 17(3), 219–244 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ito, K., Kunisch, K.: Semi-smooth Newton methods for state-constrained optimal control problems. Sys. Control Lett. 50(3), 221–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin (1971)

    Book  MATH  Google Scholar 

  22. Liu, W.B., Yang, D.P., Yuan, L., Ma, C.Q.: Finite element approximations of an optimal control problem with integral state constraint. SIAM J. Numer. Anal. 48(3), 1163–1185 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, W.B., Yan, N.: Adaptive Finite Element methods for Optimal Control Governed by PDEs. Science Press, Beijing (2008)

    Google Scholar 

  24. Liu, H.P., Yan, N.: Global Superconvergence for optimal control problems governed by Stokes equations. Int. J. Numer. Anal. Model. 3(3), 283–302 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Meidner, Dominik, Rannacher, Rolf, Vexler, Boris: A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time. SIAM J. Control Optim. 49(5), 1961–1997 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Niu, H.F., Yang, D.P.: Finite element analysis of optimal control problem governed by Stokes equations with \(L^2\)-norm state-constriants. J. Comput. Math. 29(5), 589–604 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Niu, H.F., Yuan, L., Yang, D.P.: Adaptive finite element method for an optimal control problem of Stokes flow with \(L^2\)-norm state constraint. Int. J. Numer. Methods Fluids 69(3), 534–549 (2012)

    Article  MathSciNet  Google Scholar 

  28. Neittaanmaki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications. Marcel Dekker, New York (1994)

    MATH  Google Scholar 

  29. Rösch, Arnd, Wachsmuth, Daniel: A-posteriori error estimates for optimal control problems with state and control constraints. Numer. Math. 120(4), 733–762 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, J.: On fast direct Poisson solver, INF-SUP constant and iterative Stokes solver by Legendre-Galerkin method. J. Comput. Phys. 116(1), 184–188 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  32. Wang, G.S.: Optimal control of 3-dimensional Navier–Stokes equations with state constraints. SIAM J. Control Optim. 41(2), 583–606 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yuan, L., Yang, D.P.: A posteriori error estimates of optimal control problem of PDE with integral constraint for state. J. Comput. Math. 27(4), 525–542 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhou, J.W., Yang, D.P.: Spectral mixed Galerkin method for state constrained optimal control problem governed by the first bi-harmonic equation. Int. J. Comput Math. 88(14), 2988–3011 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referees for their helpful and profound comments and advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Additional information

This work is supported by National Science Foundation of China (91430104, 11271145), Specialized Research Fund for the Doctoral Program of Higher Education (20114407110009), and the Scientific Research Foundation of Graduate School of South China Normal University (2014bsxm02).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Huang, F. Galerkin Spectral Approximation of Elliptic Optimal Control Problems with \(H^1\)-Norm State Constraint. J Sci Comput 67, 65–83 (2016). https://doi.org/10.1007/s10915-015-0071-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0071-y

Keywords

Navigation