Abstract
In this paper, we study an elliptic optimal control problem with \(H^1\)-norm state constraint. The control problem is approximated by the Galerkin spectral method, which can provide high-order accuracy and fast convergence rate. The optimality conditions and a priori error estimates are presented. A reliable a posteriori error estimator is investigated, which is helpful for developing adaptive strategy in the spectral method. Some numerical tests confirm the error estimates and illustrate the performance of the indicator.
Similar content being viewed by others
References
Benedix, Olaf, Vexler, Boris: A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints. Comput. Optim. Appl. 44(1), 3–25 (2009)
Bergounioux, M., Kunisch, K.: On the structure of Lagrange multipliers for state-constrained optimal control problems. Syst. Control Lett. 48, 169–176 (2003)
Bergounioux, M., Kunisch, K.: Augmented Lagrangian techniques for elliptic state constrained optimal control problems. SIAM J. Control Optim. 35, 1524–1543 (1997)
Bergounioux, M., Kunisch, K.: Primal-dual strategy for state-constrained optimal control problems. Comput. Optim. Appl. 22, 193–224 (2002)
Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24(6), 1309–1318 (1986)
Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31(4), 993–1006 (1993)
Casas, E.: Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints, ESAIM. Control Optim. Calc. Var. 8, 345–374 (2002)
Casas, E., Mateos, M., Raymond, Jean-Pierre: Error estimates for the numerical approximation of a distributed control problem for the steady–state Navier-Stokes equations. SIAM J. Control Optim. 46, 952–982 (2007)
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer-Verlag, Berlin (1988)
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, Amsterdam (1983)
Chen, Y., Huang, F., YI, N., Liu, W.B.: A Legendre-Galerkin spectral method for optimal control problems governed by Stokes equations. SIAM J. Numer. Anal. 49(4), 1625–1648 (2011)
Chen, Y., Yi, N., Liu, W.B.: A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations. SIAM J. Numer. Anal. 46(5), 2254–2275 (2008)
De Los Reyes, J.C., Griesse, R.: State-constrained optimal control of the three-dimensionl stationary Navier–Stokes equations. J. Math. Anal. Appl. 343, 257–272 (2008)
De Los Reyes, J.C., Kunisch, K.: A semi-smooth Newton method for regularized state-constrained optimal control of the Navier–Stokes equations. Computing 78, 287–309 (2006)
Gunzburger, M.D., Hou, L.S.: Finite-dimensional approximation of a class of constrained nonlinear optimal control problems. SIAM J. Control Optim. 34(3), 1001–1043 (1996)
Gunzburger, M.D., Hou, L.S., Svobodny, T.P.: Boundary velocity control of incompressible folw with an application to viscous drag reduction. SIAM J. Control Optim. 30, 167–181 (1992)
Gong, W., Yan, N.: A mixed finite element scheme for optimal control problems with pointwise state constraints. J. Sci. Comput. 46, 182–203 (2011)
Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications, vol. 23. Springer, Berlin (2009)
Hoppe, R.H.W., Kieweg, M.: A posteriori error estimation of finite element approximations of pointwise state constrained distributed control problems. J. Numer. Math. 17(3), 219–244 (2009)
Ito, K., Kunisch, K.: Semi-smooth Newton methods for state-constrained optimal control problems. Sys. Control Lett. 50(3), 221–228 (2003)
Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin (1971)
Liu, W.B., Yang, D.P., Yuan, L., Ma, C.Q.: Finite element approximations of an optimal control problem with integral state constraint. SIAM J. Numer. Anal. 48(3), 1163–1185 (2010)
Liu, W.B., Yan, N.: Adaptive Finite Element methods for Optimal Control Governed by PDEs. Science Press, Beijing (2008)
Liu, H.P., Yan, N.: Global Superconvergence for optimal control problems governed by Stokes equations. Int. J. Numer. Anal. Model. 3(3), 283–302 (2006)
Meidner, Dominik, Rannacher, Rolf, Vexler, Boris: A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time. SIAM J. Control Optim. 49(5), 1961–1997 (2011)
Niu, H.F., Yang, D.P.: Finite element analysis of optimal control problem governed by Stokes equations with \(L^2\)-norm state-constriants. J. Comput. Math. 29(5), 589–604 (2011)
Niu, H.F., Yuan, L., Yang, D.P.: Adaptive finite element method for an optimal control problem of Stokes flow with \(L^2\)-norm state constraint. Int. J. Numer. Methods Fluids 69(3), 534–549 (2012)
Neittaanmaki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications. Marcel Dekker, New York (1994)
Rösch, Arnd, Wachsmuth, Daniel: A-posteriori error estimates for optimal control problems with state and control constraints. Numer. Math. 120(4), 733–762 (2012)
Shen, J.: On fast direct Poisson solver, INF-SUP constant and iterative Stokes solver by Legendre-Galerkin method. J. Comput. Phys. 116(1), 184–188 (1995)
Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)
Wang, G.S.: Optimal control of 3-dimensional Navier–Stokes equations with state constraints. SIAM J. Control Optim. 41(2), 583–606 (2002)
Yuan, L., Yang, D.P.: A posteriori error estimates of optimal control problem of PDE with integral constraint for state. J. Comput. Math. 27(4), 525–542 (2009)
Zhou, J.W., Yang, D.P.: Spectral mixed Galerkin method for state constrained optimal control problem governed by the first bi-harmonic equation. Int. J. Comput Math. 88(14), 2988–3011 (2011)
Acknowledgments
The authors are grateful to the referees for their helpful and profound comments and advices.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by National Science Foundation of China (91430104, 11271145), Specialized Research Fund for the Doctoral Program of Higher Education (20114407110009), and the Scientific Research Foundation of Graduate School of South China Normal University (2014bsxm02).
Rights and permissions
About this article
Cite this article
Chen, Y., Huang, F. Galerkin Spectral Approximation of Elliptic Optimal Control Problems with \(H^1\)-Norm State Constraint. J Sci Comput 67, 65–83 (2016). https://doi.org/10.1007/s10915-015-0071-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-015-0071-y