[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Coupled Model and Grid Adaptivity in Hierarchical Reduction of Elliptic Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we propose a surrogate model for advection–diffusion–reaction problems characterized by a dominant direction in their dynamics. We resort to a hierarchical model reduction where we couple a modal representation of the transverse dynamics with a finite element approximation along the mainstream. This different treatment of the dynamics entails a surrogate model enhancing a purely 1D description related to the leading direction. The coefficients of the finite element expansion along this direction introduce a generally non-constant description of the transversal dynamics. Aim of this paper is to provide an automatic adaptive approach to locally select the dimension of the modal expansion as well as the finite element step in order to satisfy a prescribed tolerance on a goal functional of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. From (13)–(14), the further upper bound \(|J(e_{\mathbf{m}^+})| \le \beta _\mathbf{m}/(1 -\beta _\mathbf{m})\, |J(\delta u_{\mathbf{mm}^+})|\) trivially follows.

  2. We usually set \(\widetilde{m}^+=m+2\); due to the parity of sinusoidal functions, the simplest choice \(\widetilde{m}^+=m+1\) is completely useless when dealing with solutions symmetric with respect to fiber \(\Omega _{1D}\).

References

  1. Achchab, B., Achchab, S., Agouzal, A.: Some remarks about the hierarchical a posteriori error estimate. Numer. Methods Partial Differ. Equ. 20(6), 919–932 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ainsworth, M.: A posteriori error estimation for fully discrete hierarchic models of elliptic boundary value problems on thin domains. Numer. Math. 80, 325–362 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Birkhauser Verlag, Basel (2003)

    Book  MATH  Google Scholar 

  5. Bank, R.E., Smith, R.K.: A posteriori error estimates based on hierarchical bases. SIAM J. Numer. Anal. 30, 921–935 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bernardi, C., Maday, Y., Patera, A.T.: Domain decomposition by the mortar element method. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 384. Kluwer, Dordrecht (1993)

  8. Blanco, P.J., Leiva, J.S., Feijóo, R.A., Buscaglia, G.C.: Black-box decomposition approach for computational hemodynamics: one-dimensional models. Comput. Methods Appl. Mech. Eng. 200(13–16), 1389–1405 (2011)

    Article  MATH  Google Scholar 

  9. Braack, M., Ern, A.: A posteriori control of modeling errors and discretization errors. Multiscale Model Simul. 1, 221–238 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signal and images. SIAM Rev. 51(1), 34–81 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ciarlet, Ph: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  12. Clément, Ph: Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 2, 77–84 (1975)

    Google Scholar 

  13. Cnossen, J.M., Bijl, H., van Brummelen, E.H.: Model-error estimation for goal-oriented model adaptation in flow-simulations. Finite volumes for complex applications IV, 173–183 (2005)

  14. Dahmen, W., Kurdila, A.J., Oswald, P. (eds.): Multiscale Wavelet Methods for Partial Differential Equations. Wavelet Analysis and Its Applications, vol. 6. Academic Press, San Diego (1997)

  15. Dörfler, W., Nochetto, R.H.: Small data oscillation implies the saturation assumption. Numer. Math. 91, 1–12 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ern, A., Perotto, S., Veneziani, A.: Hierarchical model reduction for advection–diffusion–reaction problems. In: Kunisch, K., Of, G., Steinbach, O. (eds.) Numerical Mathematics and Advanced Applications, pp. 703–710. Springer, Berlin (2008)

    Chapter  Google Scholar 

  17. Formaggia, L., Nobile, F., Quarteroni, A., Veneziani, A.: Multiscale modelling of the circulatory system: a preliminary analysis. Comput. Visual. Sci. 2, 75–83 (1999)

    Article  MATH  Google Scholar 

  18. Formaggia, L., Quarteroni, A., Veneziani, A. (eds.): Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System. Modeling Simulation and Applications, vol. 1. Springer, Milano (2009)

  19. Giles, M.B., Süli, E.: Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numer. 11, 145–236 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hinze, M., Volkwein, S.: Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control. In: Dimension Reduction of Large-Scale Systems. Lect. Notes Comput. Sci. Eng., vol. 45, pp. 261–306. Springer, Berlin (2005)

  21. Johnson, C.: A new paradigm for adaptive finite element methods. In: Whiteman, J. (eds.) Proceedings of MAFELAP 93. Wiley, New York (1993)

  22. Lacour, C., Maday, Y.: Two different approaches for matching nonconforming grids: the mortar element method and the FETI method. BIT 37, 720–738 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lasis, A., Süli, E.: Poincaré-type inequalities for broken Sobolev spaces. Tech. Report 03-10, Oxford University Computing Laboratory (2003)

  24. Lions, J.L., Magenes, E.: Non Homogeneous Boundary Value Problems and Applications. Springer, Berlin (1972)

    Book  Google Scholar 

  25. Maday, Y., Ronquist, E.M.: A reduced-basis element method. C. R. Acad. Sci. Paris Ser. I(335), 195–200 (2002)

    Article  MathSciNet  Google Scholar 

  26. Micheletti, S., Perotto, S., David, F.: Model adaptation enriched with an anisotropic mesh spacing for nonlinear equations: application to environmental and CFD problems. Numer. Math. Theor. Meth. Appl. 6(3), 447–478 (2013)

    MATH  MathSciNet  Google Scholar 

  27. Miglio, E., Perotto, S., Saleri, F.: Model coupling techniques for free-surface flow problems. Part I. Nonlinear Anal. 63, 1885–1896 (2005)

    Article  Google Scholar 

  28. Oden, J.T., Prudhomme, S.: Goal-oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl. 41, 735–756 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Oden, J.T., Prudhomme, S.: Estimation of modeling error in computational mechanics. J. Comput. Phys. 182, 469–515 (2002)

    Article  MathSciNet  Google Scholar 

  30. Oden, J.T., Prudhomme, S., Hammerand, D.C., Kuczma, M.S.: Modeling error and adaptivity in nonlinear continuum mechanics. Comput. Methods Appl. Mech. Eng. 190, 6663–6684 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Oden, J.T., Vemaganti, K.S.: Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms. J. Comput. Phys. 164(1), 22–47 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ohlberger, M., Smetana, K.: A new problem adapted hierarchical model reduction technique based on reduced basis methods and dimensional splitting. Tech. Report 03-10, University Muenster (2010)

  33. Perotto, S.: Adaptive modeling for free-surface flows. M2AN Math. Model. Numer. Anal. 40(3), 469–499 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Perotto, S.: Hierarchical model (Hi-Mod) reduction in non-rectilinear domains. In press: Proceedings of the 21st International Conference on Domain Decomposition Methods. Springer, Berlin (2013)

  35. Perotto, S., Ern, A., Veneziani, A.: Hierarchical local model reduction for elliptic problems: a domain decomposition approach. Multiscale Model. Simul. 8(4), 1102–1127 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (1999)

    Google Scholar 

  37. Robertson, A.M., Sequeira, A.: A director theory approach for modeling blood flow in the arterial system: an alternative to classical 1D models. Math. Models Methods Appl. Sci. 15(6), 871–906 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  38. Stein, E., Rüter, M., Ohnimus, S.: Error-controlled adaptive goal-oriented modeling and finite element approximations in elasticity. Comput. Methods Appl. Mech. Eng. 196, 3598–3613 (2007)

    Article  MATH  Google Scholar 

  39. Toselli, A., Widlund, O.: Domain Decomposition Methods–Algorithms and Theory. Springer, Berlin (2005)

    MATH  Google Scholar 

  40. Vogelius, M., Babuška, I.: On a dimensional reduction method. III. A posteriori error estimation and an adaptive approach. Math. Comp. 37, 361–384 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank warmly Alexandre Ern for many discussions and fundamental suggestions he gave along the entire preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Perotto.

Additional information

This work has been partially supported by the PRIN 2010–2011 project “Innovative methods for water resources management under hydro-climatic uncertainty scenarios”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perotto, S., Veneziani, A. Coupled Model and Grid Adaptivity in Hierarchical Reduction of Elliptic Problems. J Sci Comput 60, 505–536 (2014). https://doi.org/10.1007/s10915-013-9804-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9804-y

Keywords

Navigation