[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

On the Accuracy and Stability of the Perfectly Matched Layer in Transient Waveguides

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Energy transmitted along a waveguide decays less rapidly than in an unbounded medium. In this paper we study the efficiency of a PML in a time-dependent waveguide governed by the scalar wave equation. A straight forward application of a Neumann boundary condition can degrade accuracy in computations. To ensure accuracy, we propose extensions of the boundary condition to an auxiliary variable in the PML. We also present analysis proving stability of the constant coefficient PML, and energy estimates for the variable coefficients case. In the discrete setting, the modified boundary conditions are crucial in deriving discrete energy estimates analogous to the continuous energy estimates. Numerical stability and convergence of our numerical method follows. Finally we give a number of numerical examples, illustrating the stability of the layer and the high order accuracy of our proposed boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sjögreen, B., Petersson, N.A.: Perfectly matched layer for Maxwell’s equation in second order formulation. J. Comp. Physiol. 209, 19–46 (2005)

    MATH  Google Scholar 

  2. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comp. Physiol. 111(2), 220–236 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Mattsson, K., Nordström, J.: High order finite difference methods for wave propagation in discontinuous media. J. Comp. Physiol. 220, 249–269 (2006)

    MATH  Google Scholar 

  4. Mattsson, K., Ham, F., Iaccarino, G.: Stable and accurate wave-propagation in discontinuous media. J. Sci. Comput. 41, 8753–8767 (2008)

    Google Scholar 

  5. Svärd, M., Nordström, J.: On the order of accuracy for difference approximations of initial-boundary value problems. J. Comp. Physiol. 218, 333–352 (2006)

    MATH  Google Scholar 

  6. Mattsson, K., Ham, F., Iaccarino, G.: Stable boundary treatment for the wave equation in second-order form. J. Sci. Comput. 41, 336–383 (2009)

    Article  MathSciNet  Google Scholar 

  7. Gustafsson, B.: High Order Difference Methods for Time Dependent PDE. Springer, Berlin (2008)

    MATH  Google Scholar 

  8. Bécache, E., Fauqueux, S., Joly, P.: Stability of perfectly matched layers, group velocities and anisotropic waves. J. Comp. Physiol. 188, 399–433 (2003)

    MATH  Google Scholar 

  9. Skelton, E.A., Adams, S.D.M., Craster, R.V.: Guided elastic waves and perfectly matched layers. Wave Motion 44, 573–592 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gedney, S.D.: An anisotropic perfectly matched layer absorbing media for the truncation of FDTD latices, antennas and propagation. IEEE Trans. Antennas Propag. 44, 1630–1639 (1996)

    Article  Google Scholar 

  11. Motamed, M., Kreiss, H.-O.: Hyperbolic initial boundary value problems which are not boundary stable. Numerical Analysis, School of Computer Science and Communication, KTH, Stockholm, Sweden (2008)

  12. Kuzuoglu, M., Mittra, R.: Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microw. Guided Wave Lett. 6, 447–449 (1996)

    Article  Google Scholar 

  13. Chew, W., Weedon, W.: A 3-D perfectly matched medium from modified maxwell’s equations with stretched coordinates. Microw. Opt. Technol. Lett. 7, 599–604 (1994)

    Article  Google Scholar 

  14. Duru, K., Kreiss, G.: A Well-posed and discretely stable perfectly matched layer for elastic wave equations in second order formulation. Commun. Comput. Phys. 11, 1643–1672 (2012)

    MathSciNet  Google Scholar 

  15. Duru, K.: Perfectly matched layer for second order wave equations. Licentiate Thesis, Div. Sc. Comp., Dept. of Infor. Tech., Uppsala University, 2010–004 (2010). ISSN 1404–5117

  16. Duru, K., Mattsson, K., Kreiss, G.: Stable and conservative time propagators for second order hyperbolic systems. Tech. Rep., Div. Sc. Comp., Dept. of Infor. Tech., Uppsala University, 201–008 (2011)

  17. Grote, M.J., Sim, I.: Efficient PML for the wave equation. Dept. of Maths, University of Basel, Switzerland (2009)

  18. Alpert, B., Greengard, L., Hagstrom, T.: Nonreflecting boundary conditions for the time-dependent wave equation. J. Comput. Phys. 180, 270–296 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Collino, F.: High order absorbing boundary conditions for wave propagation models. Straight line and corner cases. In: Kleinman, R. et al. (eds.) Proceedings of the Second International Conference on Mathematical and Numerical Aspects of Waves, pp. 161–171. SIAM, Delaware (1993)

    Google Scholar 

  20. Hagstrom, T., Mar-Or, A., Givoli, D.: High-order local absorbing conditions for the wave equation: extensions and improvements. J. Comput. Phys. 227, 3322–3357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Engquist, B., Majda, A.: Absorbing boundary conditions for numerical simulation of waves. Proc. Natl. Acad. Sci. USA 74, 1765–1766 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Givoli, D.: High-order local non-reflecting boundary contions: a review. Wave Motion 39, 319–326 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grote, M., Sim, I.: On local nonreflecting boundary conditions for time dependent wave propagation problems. Dept. of Maths, University of Basel, Switzerland (2009)

  24. Hagstrom, T., Warburton, T., Givoli, D.: Radiation boundary conditions for time-dependent waves based on complete plane waves expansions. J. Comput. Appl. Math. 234(16), 1988–1995 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rylander, T., Jin, J.-M.: Perfectly matched layer in three dimensions for the time-domain finite element method applied to radiation problems. IEEE Trans. Antennas Propag. 53(4), 1489–1499 (2005)

    Article  MathSciNet  Google Scholar 

  26. Abenius, E., Edelvik, F., Johansson, C.: Waveguide truncation using UPML in the finite-element time-domain method. Tech. report, Department of Information Technology, Uppsala University, ISSN 1404-3203; 2005-026 (2005)

  27. Bécache, E., Petropoulos, P.G., Gedney, S.D.: On the long-time behaviour of unsplit perfectly matched layers. IEEE Trans. Antennas Propag. 52, 1335–1342 (2004)

    Article  Google Scholar 

  28. Bécache, E., Joly, P.: On the analysis of Bérenger’s perfectly matched layers for maxwell’s equations. Modél. Math. Anal. Numér. 36, 87–119 (2002)

    Article  MATH  Google Scholar 

  29. Bérenger, J.-P.: Perfectly matched layer (PML) for computational electromagnetics. Synthesis lectures on computational electromagnetics, Morgan and Claypool (2007)

  30. Appelö, D., Colonius, T.: A high order super-grid-scale absorbing layer and its application to linear hyperbolic systems. J. Comp. Physiol. 228(11), 4200–4217 (2009)

    MATH  Google Scholar 

  31. Appelö, D., Kreiss, G.: Application of a perfectly matched layer to the nonlinear wave equation. Wave Motion 44, 531–548 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lu, Y.Y., Zhu, D.J.: Propagating modes in optical waveguides terminated by perfectly matched layers. IEEE Photonics Technol. Lett. 17(12), 2601–2603 (2005)

    Article  Google Scholar 

  33. Bérenger, J.-P.: Application of the CFS PML to the absorption of evanescent waves in waveguides. IEEE Microw. Wirel. Compon. Lett. 12(6), 218–220 (2002)

    Article  Google Scholar 

  34. Rabinovich, D., Givoli, D., Bécache, E.: Comparison of high-order absorbing boundary conditions and perfectly matched layers in the frequency domain. Int. J. Numer. Methods Biomed. Eng. 26, 1351–1369 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Duru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duru, K., Kreiss, G. On the Accuracy and Stability of the Perfectly Matched Layer in Transient Waveguides. J Sci Comput 53, 642–671 (2012). https://doi.org/10.1007/s10915-012-9594-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9594-7

Keywords

Navigation