Abstract
We consider the finite element discretization of a convection-diffusion equation, where the convection term is handled via a fluctuation splitting algorithm. We prove a posteriori error estimates which allow us to perform mesh adaptivity in order to optimize the discretization of these equations. Numerical results confirm the interest of such an approach.
Similar content being viewed by others
References
Abgrall, R.: Residual distribution schemes: current status and future trends. Comput. Fluids 35, 641–669 (2006)
Abgrall, R., Mezine, M.: Construction of second-order accurate monotone and stable residual distribution schemes for steady problems. J. Comput. Phys. 195, 474–507 (2004)
Abgrall, R., Roe, P.L.: High order fluctuation schemes on triangular meshes. J. Sci. Comput. 19, 3–36 (2003)
Bernardi, C., Hecht, F., Verfürth, R.: A posteriori error analysis of the method of characteristics. Math. Models Methods Appl. Sci. 21, 1355–1376 (2011)
Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations variationnelles de problèmes aux limites elliptiques. In: Collection Mathématiques et Applications, vol. 45. Springer, Berlin (2004)
Burman, E.: A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal. 43, 2012–2033 (2005)
Chacón Rebollo, T., Gómez Mármol, M., Narbona Reina, G.: Numerical analysis of the PSI solution of advection–diffusion problems through a Petrov–Galerkin formulation. Math. Models Methods Appl. Sci. 17, 1905–1936 (2004)
Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9(R2), 77–84 (1975)
Cockburn, B.: An introduction to the discontinuous Galerkin method for advection-dominated problems. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Math., vol. 1697, pp. 151–268. Springer, Berlin (1998)
Deconinck, H., Struijs, R., Bourgeois, G., Roe, P.L.: Compact advection schemes on unstructured meshes. In: Comput. Fluid Dynamics. VKI Lecture Series, vol. 1993-04 (1993)
Deconinck, H., Struijs, R., Roe, P.L.: Compact advection schemes on unstructured grids. In: Comput. Fluid Dynamics. VKI Lecture Series, vol. 1993-04 (1993)
Després, B.: Lax theorem and finite volume schemes. Math. Comput. 73, 1203–1234 (2004)
Douglas, J. Jr., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)
Eriksson, K., Larson, M.G., Målqvist, A.: A posteriori error analysis of the boundary penalty method. Chalmers Finite Element Center Preprints 09 (2004)
Ern, A., Stephansen, A.F.: A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods. J. Comput. Math. 26, 488–510 (2008)
Ern, A., Stephansen, A.F., Vohralík, M.: Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems. J. Comput. Appl. Math. 234, 114–130 (2010)
Frey, P.J., George, P.-L.: Maillages, applications aux éléments finis. Hermès, Paris (1999)
Hecht, F., Pironneau, O.: FreeFem++ (2011). www.freefem.org
Lesaint, P., Raviart, P.-A.: On a finite element method for solving the neutron transport equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations. Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison (1974), pp. 89–123
Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hamb. 36, 9–15 (1971)
Perthame, B.: Convergence of N-schemes for linear advection equations. Trends in applications of mathematics to mechanics. Pitman Monogr. Surv. Pure Appl. Math. 77, 323–333 (1985)
Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math. 38, 309–332 (1982)
Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994)
Raviart, P.-A., Thomas, J.-M.: A mixed finite element method for second order elliptic problems. In: Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, Berlin (1977)
Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos National Laboratory, Los Alamos, NM (1973)
Roe, P.L.: Fluctuations and signals—a framework for numerical evolution problems. In: Numerical Methods for Fluid Dynamics. Proc. Conf., Reading (1982), pp. 219–257
Smith, R.M., Hutton, A.G.: The numerical treatment of advection: a performance comparison of current methods. Numer. Heat Transf., Part A, Appl. 5, 439–461 (1982)
Struijs, R.: A multidimensional upwind discretization method for the Euler equations on unstructured grids. Ph.D. Thesis, Technische Universiteit Delft (1994)
Struijs, R., Deconinck, H., Roe, P.L.: Fluctuation splitting schemes for the 2d Euler equations. In: Comput. Fluid Dynamics. VKI Lecture Series, vol. 1991-01 (1991)
Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner, New York (1996)
Vohralík, M.: A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations. SIAM J. Numer. Anal. 45, 1570–1599 (2007)
Vohralík, M.: Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods. Numer. Math. 111, 121–158 (2008)
Vohralík, M.: Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients. J. Sci. Comput. 46, 397–438 (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
Research partially supported by Junta de Andalucía Excellence grant P07-FQM-02538.
Rights and permissions
About this article
Cite this article
Bernardi, C., Chacón Rebollo, T. & Restelli, M. A Posteriori Analysis of a Positive Streamwise Invariant Discretization of a Convection-Diffusion Equation. J Sci Comput 51, 349–374 (2012). https://doi.org/10.1007/s10915-011-9514-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-011-9514-2