Abstract
The goal of this paper is to provide an analysis of the “toolkit” method used in the numerical approximation of the time-dependent Schrödinger equation. The “toolkit” method is based on precomputation of elementary propagators and was seen to be very efficient in the optimal control framework. Our analysis shows that this method provides better results than the second order Strang operator splitting. In addition, we present two improvements of the method in the limit of low and large intensity control fields.
Similar content being viewed by others
References
Judson, R.S., Rabitz, H.: Teaching lasers to control molecules. Phys. Rev. Lett. 68, 1500 (1992)
Assion, A., Baumert, T., Bergt, M., Brixner, T., Kiefer, B., Seyfried, V., Strehle, M., Gerber, G.: Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282, 919–922 (1998)
Levis, R.J., Menkir, G.M., Rabitz, H.: Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292, 709–713 (2001)
Rabitz, H., de Vivie-Riedle, R., Motzkus, M., Kompa, K.: Wither the future of controlling quantum phenomena? Science 288, 824–828 (2000)
Warren, W.S., Rabitz, H., Dahleh, M.: Coherent control of quantum dynamics: The dream is alive. Science 259, 1581–1589 (1993)
Weinacht, T.C., Ahn, J., Bucksbaum, P.H.: Controlling the shape of a quantum wavefunction. Nature 397, 233–235 (1999)
Beauchard, K., Laurent, C.: Local controllability of 1d linear and nonlinear Schrödinger equations with bilinear control. J. Math. Pures Appl. 94(5), 520–554 (2010)
Chambrion, T., Mason, P., Sigalotti, M., Boscain, U.: Controllability of the discrete-spectrum Schrödinger equation driven by an external field. Ann. Inst. Henri Poincare (C) Non Linear Anal. 26(1), 329–349 (2009)
Nersesyan, V.: Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications. Ann. Inst. Henri Poincare (C) Non Linear Anal. 27(3), 901–915 (2010)
Chuang, I.L., Laflamme, R., Shor, P.W., Zurek, W.H.: Quantum computers, factoring, and decoherence. Science 270, 1633–1635 (1995)
Besse, C., Bidégaray, B., Descombes, S.: Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40(1), 26–40 (2002) (electronic)
Ciarlet, P.G., Lions, J.L. (eds.): Handbook of Numerical Analysis, vol. IX. North-Holland, Amsterdam (2003). Numerical methods for fluids. Part 3
Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)
Yip, F.L., Mazziotti, D.A., Rabitz, H.: A local-time algorithm for achieving quantum control. J. Phys. Chem. A 107, 7264–7269 (2003)
Yip, F.L., Mazziotti, D.A., Rabitz, H.: A propagation toolkit to design quantum control. J. Chem. Phys. 118(18), 8168–8172 (2003)
Belhadj, M., Salomon, J., Turinici, G.: A stable toolkit method in quantum control. J. Phys. A: Math. Theor. 41, 362001 (2008)
Jahnke, T., Lubich, C.: Error bounds for exponential operator splittings. BIT Numer. Math. 40(4), 735–744 (2000)
Sanz-Serna, J.M., Verwer, J.G.: Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation. IMA J. Numer. Anal. 6(1), 25–42 (1986)
Rabitz, H., Turinici, G., Brown, E.: Control of quantum dynamics: Concepts, procedures and future prospects. In: Ciarlet, Ph.G. (ed.) Computational Chemistry, Special Volume (C. Le Bris Editor) of Handbook of Numerical Analysis, vol. X, pp. 833–887. Elsevier, Amsterdam (2003)
Ben Haj-Yedder, A., Auger, A., Dion, C.M., Keller, A., Le Bris, C., Atabek, O.: Numerical optimization of laser fields to control molecular orientation. Phys. Rev. A 66, 063401 (2002)
Turinici, G., Ramakhrishna, V., Li, B., Rabitz, H.: Optimal discrimination of multiple quantum systems: Controllability analysis. J. Phys. A, Math. Gen. 37(1), 273–282 (2003)
Turinici, G., Rabitz, H.: Optimally controlling the internal dynamics of a randomly oriented ensemble of molecules. Phys. Rev. A 70(6), 063412 (2004)
Beauchard, K., Coron, J.-M., Rouchon, P.: Controllability issues for continuous-spectrum systems and ensemble controllability of Bloch equations. Commun. Math. Phys. 296, 525–557 (2010)
Brezis, H.: Analyse fonctionnelle: Théorie et applications. Dunod, Paris (1994)
Cazenave, T., Haraux, A.: An Introduction to Semilinear Evolution Equations. Oxford University, London (1998)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics, II, Fourier Analysis, Self-adjointness. Academic Press, San Diego (1975)
Sayood, K.: Introduction to Data Compression, 3rd edn. Morgan Kaufmann, San Mateo (2006)
Degani, I., Zanna, A., Saelen, L., Nepstad, R.: Quantum control with piecewise constant control functions. SIAM J. Sci. Comput. 31(5), 3566–3594 (2009)
Balint-Kurti, G.G., Manby, F.R., Ren, Q., Artamonov, M., Ho, T., Rabitz, H.: Quantum control of molecular motion including electronic polarization effects with a two-stage toolkit. J. Chem. Phys. 122(8), 084110 (2005)
Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003) (electronic)
Maday, Y., Rønquist, E.M.: A reduced-basis element method. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01), Uppsala, vol. 17, pp. 447–459 (2002)
Maday, Y., Rønquist, E.M.: The reduced basis element method: application to a thermal fin problem. SIAM J. Sci. Comput. 26(1), 240–258 (2004) (electronic)
Cancès, E., Le Bris, C., Maday, Y., Nguyen, N.C., Patera, A.T., Pau, G.S.H.: Feasibility and competitiveness of a reduced basis approach for rapid electronic structure calculations in quantum chemistry. In: High-Dimensional Partial Differential Equations in Science and Engineering. CRM Proc. Lecture Notes, vol. 41, pp. 15–47. Am. Math. Soc., Providence (2007)
Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Manchester University Press, Manchester (1992)
Salomon, J., Dion, C.M., Turinici, G.: Optimal molecular alignment and orientation through rotational ladder climbing. J. Chem. Phys. 123(14), 144310 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Baudouin, L., Salomon, J. & Turinici, G. Analysis of the “Toolkit” Method for the Time-Dependent Schrödinger Equation. J Sci Comput 49, 111–136 (2011). https://doi.org/10.1007/s10915-010-9450-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-010-9450-6