[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Tailored Finite Point Method for a Singular Perturbation Problem with Variable Coefficients in Two Dimensions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a tailored-finite-point method for a type of linear singular perturbation problem in two dimensions. Our finite point method has been tailored to some particular properties of the problem. Therefore, our new method can achieve very high accuracy with very coarse mesh even for very small ε, i.e. the boundary layers and interior layers do not need to be resolved numerically. In our numerical implementation, we study the classification of all the singular points for the corresponding degenerate first order linear dynamic system. We also study some cases with nonlinear coefficients. Our tailored finite point method is very efficient in both linear and nonlinear coefficients cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, A.E., Han, H.D., Kellogg, R.B.: A priori estimates and analysis of a numerical method for a turning point problem. Math. Comput. 42, 465–492 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brayanov, I., Dimitrova, I.: Uniformly convergent high-order schemes for a 2D elliptic reaction-diffusion problem with anisotropic coefficients. Lect. Notes Comput. Sci. 2542, 395–402 (2003)

    Google Scholar 

  3. Cheng, M., Liu, G.R.: A novel finite point method for flow simulation. Int. J. Numer. Methods Fluids 39, 1161–1178 (2002)

    Article  MATH  Google Scholar 

  4. Ge, L., Zhang, J.: High accuracy iterative solution of convection diffusion equation with boundary layers on nonuniform grids. J. Comput. Phys. 171, 560–578 (2001)

    Article  MATH  Google Scholar 

  5. Han, H.D.: The artificial boundary method—numerical solutions of partial differential equations on unbounded domains. In: Li, T., Zhang, P. (eds.) Frontiers and Prospects of Contemporary Applied Mathematics. Higher Education Press/World Scientific, Singapore (2005)

    Google Scholar 

  6. Han, H., Huang, Z.: A tailored finite point method for the Helmholtz equation with high wave numbers in heterogeneous medium. J. Comput. Math. 26, 728–739 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Han, H., Huang, Z., Kellogg, B.: A Tailored finite point method for a singular perturbation problem on an unbounded domain. J. Sci. Comput. 36, 243–261 (2008)

    Article  MathSciNet  Google Scholar 

  8. Huang, Z.: Tailored finite point method for the interface problem. Netw. Heterogeneous Media 4, 91–106 (2009)

    Article  Google Scholar 

  9. Hemker, P.W.: A singularly perturbed model problem for numerical computation. J. Comput. Appl. Math. 76, 277–285 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Il’in, A.M.: Differencing scheme for a differential equation with a small parameter affecting the highest derivative. Math. Notes 6, 596–602 (1969)

    Google Scholar 

  11. Iooss, G., Joseph, D.D.: Elementary Stability and Bifurcation Theory. Springer, New York (1980)

    MATH  Google Scholar 

  12. Li, J., Chen, Y.: Uniform convergence analysis for singularly perturbed elliptic problems with parabolic layers. Numer. Math. Theor. Methods Appl. 1, 138–149 (2008)

    MATH  Google Scholar 

  13. Li, J., Navon, I.M.: Uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems: convection-diffusion. Comput. Methods Appl. Mech. Eng. 162, 49–78 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, H., Atluri, S.N.: The Meshless Local Petrov-Galerkin (MLPG) method for solving incompressible Navier-Stokes equations. CMES 2, 117–142 (2001)

    MathSciNet  Google Scholar 

  15. Mendeza, B., Velazquez, A.: Finite point solver for the simulation of 2-D laminar incompressible unsteady flows. Comput. Methods Appl. Mech. Eng. 193, 825–848 (2004)

    Article  Google Scholar 

  16. Miller, J.J.H.: On the convergence, uniformly in ε, of difference schemes for a two-point boundary singular perturbation problem. In: Hernker, P.W., Miller, J.J.H. (eds.) Numerical Analysis of Singular Perturbation Problems, pp. 467–474. Academic Press, San Diego (1979)

    Google Scholar 

  17. Morton, K.W.: Numerical Solution of Converction-Diffusion Problems. Applied Mathematics and Mathematical Computation, vol. 12. Chapman and Hall, London (1996)

    Google Scholar 

  18. Morton, K.W., Stynes, M., Süli, E.: Analysis of a cell-vertex finite volume method for convection-diffusion problems. Math. Comput. 66, 1389–1406 (1997)

    Article  MATH  Google Scholar 

  19. Oñate, E., Idelsohn, S., Zienkiewicz, O.C., Taylor, R.L.: A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int. J. Numer. Methods Eng. 39, 3839–3866 (1996)

    Article  MATH  Google Scholar 

  20. Roos, H.-G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer, New York (1996)

    MATH  Google Scholar 

  21. Shishkin, G.I.: A finite difference scheme on a priori adapted meshes for a singularly perturbed parabolic convection-diffusion equation. Numer. Math. Theor. Methods Appl. 1, 214–234 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Stynes, M.: Steady-state convection-diffusion problems. Acta Numer. 14, 445–508 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wesseling, P.: Uniform convergence of discretization error for a singular perturbation problem. Numer. Methods Partial Differ. Equ. 12, 657–671 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Huang.

Additional information

H. Han was supported by the NSFC Project No. 10471073.

Z. Huang was supported by the NSFC Project No. 10676017, the National Basic Research Program of China under the grant 2005CB321701.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, H., Huang, Z. Tailored Finite Point Method for a Singular Perturbation Problem with Variable Coefficients in Two Dimensions. J Sci Comput 41, 200 (2009). https://doi.org/10.1007/s10915-009-9292-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-009-9292-2

Keywords

Navigation