[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Numerical Method for Free-Surface Flows and Its Application to Droplet Impact on a Thin Liquid Layer

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a simple and practical numerical method for free surface flows. The method is based various methods, the level set method of an interface capturing method, the THINC/WLIC (tangent of hyperbola for interface capturing/weighed line interface calculation) method of an interface tracking method, the CIP-CSL (constrained interpolation profile conservative semi-Lagrangian) method of a conservation equation solver, VSIAM3 (volume/surface integrated average based multi-moment method) of a fluid solver and the CSF (continuum surface force) model of a surface force model. The level set method and the THINC/WLIC method are combined by using a CLSVOF (coupled level set and volume-of-fluid) framework. The method is applied to Rayleigh-Taylor instability with surface tension force and droplet impact on a thin liquid layer (milk crown).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aulisa, E., Manservisi, S., Scardovelli, R., Zaleski, S.: Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry. J. Comput. Phys. 225, 2301 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method of the incompressible Navier-Stokes equations. J. Comput. Phys. 85, 257 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bellman, R., Pennington, R.H.: Effect of surface tension and viscosity on Taylor instability. Q. Appl. Methods 12, 12, 151 (1954)

    MathSciNet  Google Scholar 

  6. Chang, Y.C., Hou, T.Y., Merriman, B., Osher, S.: A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124, 449–464 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Daly, B.J.: Numerical study of the effect of surface tension on interface instability. Phys. Fluids 12, 1340 (1969)

    Article  MATH  Google Scholar 

  8. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1967)

    Google Scholar 

  9. Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 83–116 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fedkiw, R., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gerlach, D., Tomar, G., Biswas, G., Durst, F.: Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows. Int. J. Heat Mass Transf. 49, 740 (2006)

    Article  Google Scholar 

  12. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 313–503 (1998)

    Google Scholar 

  13. Glimm, J., et al.: Front tracking in two and three dimensions. J. Comput. Mech. 7, 1 (1998)

    Google Scholar 

  14. Gueyffier, D., Zaleski, S.: Formation de digitations lors de l’impact d’une goutte sur un film liquide, Finger formation during droplet impact on a liquid film. C. R. Acad. Sci. Ser. IIB—Mech.–Phys.–Astron. 326, 839 (1998)

    Google Scholar 

  15. Harlow, F.H., Welch, E.: Numerical calculation of time-dependent viscous incompressible flow of fluids with free surface. Phys. Fluids 8, 2182 (1965)

    Article  Google Scholar 

  16. Harlow, F.H., Shannon, J.P.: The splash of a liquid drop. J. Appl. Phys. 38, 3855 (1967)

    Article  Google Scholar 

  17. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) methods for the dynamic of free boundaries. J. Comput. Phys. 39, 201 (1981)

    Article  MATH  Google Scholar 

  18. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kang, M., Fedkiw, R., Liu, X.-D.: A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 323–360 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kayafas, G., Jussim, E.: Stopping Time: The Photographs of Harold Edgerton, New Ed edn. Abrams, New York (2000)

    Google Scholar 

  21. Kim, J., Moin, P.: Applications of a fractional step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59, 308 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S., Zanetti, G.: Modeling merging and fragmentation in multiphase flows with SURFER. J. Comput. Phys. 113, 134–147 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, J.: Calcul d’interface affine par morceaux (piecewise linear interface calculation). C. R. Acad. Sci. Paris, Sér. IIb 320, 391–396 (1995)

    MATH  Google Scholar 

  24. Li, J., Renardy, Y., Renardy, M.: Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method. Phys. Fluids 12, 269–282 (2000)

    Article  Google Scholar 

  25. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Liu, X.-D., Fedkiw, R., Kang, M.: A boundary condition capturing method for Poisson’s equation on irregular domains. J. Comput. Phys. 160, 151–178 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. LeVeque, R.: High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33, 627–665 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  28. Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. SIGGRAPH 2004, ACM TOG 23, 457–462 (2004)

    Article  Google Scholar 

  29. Marella, S., Krishnan, S., Liu, H., Udaykumar, H.S.: Sharp interface Cartesian grid method I: an easily implemented technique for 3D moving boundary computations. J. Comput. Phys. 210, 1 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Noh, W.F., Woodward, P.: SLIC (simple line interface method). In: Lecture Notes in Physics, vol. 24, p. 330. Springer, Berlin (1976)

    Google Scholar 

  31. Osher, S., Sethian, J.A.: Front propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys. 79, 12 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  32. Osher, S., Fedkiw, R.: Level Set Methods and Dynamics Implicit Surface. Applied Mathematical Sciences, vol. 153. Springer, New York (2003)

    Google Scholar 

  33. Pilliod, J.E., Puckett, E.G.: Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J. Comput. Phys. 199, 465–502 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rider, W.J., Kothe, D.B.: Reconstructing volume tracking. J. Comput. Phys. 141, 112 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rieber, M., Frohn, A.: A numerical study on the mechanism of splashing. Int. J. Heat Fluid Flow 20, 453 (1999)

    Article  Google Scholar 

  36. Rudman, M.: Volume-tracking method for interfacial flow calculations. Int. J. Numer. Methods Fluids 24, 679–691 (1997)

    Article  MathSciNet  Google Scholar 

  37. Scardovelli, R., Zaleski, S.: Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31, 567–603 (1999)

    Article  MathSciNet  Google Scholar 

  38. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  39. Sussman, M., Smereka, P., Osher, S.: A level set approach for capturing solution to incompressible two-phase flow. J. Comput. Phys. 114, 146 (1994)

    Article  MATH  Google Scholar 

  40. Sussman, M., Fatemi, E.: An efficient, interface preserving level set re-distancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20, 1165 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sussman, M., Smereka, P.: Axisymmetric free boundary problems. J. Fluid Mech. 341, 269 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  42. Sussman, M., Smith, K.M., Hussaini, M.Y., Ohta, M., Zhi-Wei, R.: A sharp interface method for incompressible two-phase flows. J. Comput. Phys. 221, 469 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Sussman, M., Puckett, E.G.: A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162, 301–337 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  44. Unverdi, S.O., Tryggvason, G.: A front tracking method for viscous, incompressible multi-fluid flow. J. Comput. Phys. 100, 25 (1992)

    Article  MATH  Google Scholar 

  45. van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. 13, 631 (1992)

    Article  MATH  Google Scholar 

  46. Xiao, F., Yabe, T., Peng, X., Kobayashi, H.: Conservative and oscillation-less atmospheric transport schemes based on rational functions. J. Geophys. Res. 107, 4609 (2002)

    Article  Google Scholar 

  47. Xiao, F., Honma, Y., Kono, T.: A simple algebraic interface capturing scheme using hyperbolic tangent function. Int. J. Numer. Method. Fluid. 48, 1023 (2005)

    Article  MATH  Google Scholar 

  48. Xiao, F., Ikebata, A., Hasegawa, T.: Numerical simulations of free-interface fluids by a multi integrated moment method. Comput. Struct. 83, 409–423 (2005)

    Article  MathSciNet  Google Scholar 

  49. Xiao, F., Akoh, R., Ii, S.: Unified formulation for compressible and incompressible flows by using multi integrated moments II: multi-dimensional version for compressible and incompressible flows. J. Comput. Phys. 213, 31–56 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  50. Xiao, F., Peng, X.D., Shen, X.S.: A finite-volume grid using multimoments for geostrophic adjustment. Mon. Weather Rev. 134, 2515 (2006)

    Article  Google Scholar 

  51. Yabe, T., Tanaka, R., Nakamura, T., Xiao, F.: An exactly conservative semi-Lagrangian scheme (CIP-CSL) in one dimension. Mon. Weather Rev. 129, 332–344 (2001)

    Article  Google Scholar 

  52. Yarin, A.L.: DROP IMPACT DYNAMICS: Splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 129–157 (2006)

    Article  MathSciNet  Google Scholar 

  53. Yabe, T., Xiao, F., Utsumi, T.: Constrained interpolation profile method for multiphase analysis. J. Comput. Phys. 169, 556 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  54. Yokoi, K., Xiao, F.: Mechanism of structure formation in circular hydraulic jumps: Numerical studies of strongly deformed free surface shallow flows. Physica D 161, 202 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  55. Yokoi, K.: Numerical method for complex moving boundary problems in a Cartesian fixed grid. Phys. Rev. E 65, 055701(R) (2002)

    Google Scholar 

  56. Yokoi, K.: Numerical method for moving solid object in flows. Phys. Rev. E 67, 045701(R) (2003)

    Article  Google Scholar 

  57. Yokoi, K.: Efficient implementation of THINC scheme: a simple and practical smoothed VOF algorithm. J. Comput. Phys. 226, 1985 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  58. Youngs, D.L.: Time-dependent multi-material flow with large fluid distortion. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluid Dynamics, vol. 24, pp. 273–285. Academic Press, New York (1982)

    Google Scholar 

  59. Zalesak, S.T.: Fully multi-dimensional flux corrected transport algorithm for fluid flow. J. Comput. Phys. 31, 335 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  60. Zhang, Y., Yabe, T.: Effect of ambient gas on three-dimensional breakup in coronet formation. CFD J. 8, 378–382 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Yokoi.

Additional information

This work is supported in part by ONR Grant #N00014-03-1-0071.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoi, K. A Numerical Method for Free-Surface Flows and Its Application to Droplet Impact on a Thin Liquid Layer. J Sci Comput 35, 372–396 (2008). https://doi.org/10.1007/s10915-008-9202-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9202-z

Keywords

Navigation