Abstract
We investigate different models that are intended to describe the small mean free path regime of a kinetic equation, a particular attention being paid to the moment closure by entropy minimization. We introduce a specific asymptotic-induced numerical strategy which is able to treat the stiff terms of the asymptotic diffusive regime. We evaluate on numerics the performances of the method and the abilities of the reduced models to capture the main features of the full kinetic equation.
Similar content being viewed by others
References
Aregba-Driollet, D., Natalini, R.: Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37(6), 1973–2004 (2000) (electronic)
Bardos, C., Golse, F., Perthame, B., Sentis, R.: The nonaccretive radiative transfer equations: existence of solutions and Rosseland approximation. J. Funct. Anal. 77(2), 434–460 (1988)
Bardos, C., Santos, R., Sentis, R.: Diffusion approximation and computation of the critical size. Trans. Am. Math. Soc. 284(2), 617–649 (1984)
Brenier, Y.: Systèmes Hyperboliques de Lois de Conservation. Cours de DEA 92/93. Publ. Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, Paris (1992)
Buet, C., Cordier, S.: Asymptotic preserving scheme and numerical methods for radiative hydrodynamic models. C. R. Math. Acad. Sci. Paris 338(12), 951–956 (2004)
Buet, C., Despres, B.: Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics. JQSRT 85(3/4), 385–418 (2004)
Buet, C., Despres, B.: Asymptotic preserving and positive schemes for radiation hydrodynamics. J. Comput. Phys. 215(2), 717–740 (2006)
Carrillo, J.A., Gamba, I.M., Shu, C.-W.: Computational macroscopic approximations to the one-dimensional relaxation-time kinetic system for semiconductors. Physica D 146, 289–306 (2000)
Carrillo, J.A., Goudon, Th., Lafitte, P.: Simulation of fluid particles flows: asymptotic preserving schemes for bubbling and flowing regimes. Preprint UAB
Carrillo, J.A., Vecil, F.: Non oscillatory interpolation methods applied to Vlasov-based models. SIAM J. Sci. Comput. 29, 1179–1206 (2007)
Cartier, J., Munnier, A.: Geometric Eddington factor for radiative transfer problems. In: Numerical Methods for Hyperbolic and Kinetic Problems. IRMA Lectures in Mathematics and Theoretical Physics, vol. 7, pp. 271–293. Eur. Math. Soc., Zürich (2005)
Chavanis, P.H., Sommeria, J., Robert, R.: Statistical mechanics of two-dimensional vortices and collisionless stellar systems. Astrophys. J. 471, 385–399 (1996)
Coulombel, J.-F., Golse, F., Goudon, Th.: Diffusion approximation and entropy-based moment closure for kinetic equations. Asymptot. Anal. 45(1/2), 1–39 (2005)
Coulombel, J.-F., Goudon, Th.: Entropy-based moment closure for kinetic equations: Riemann problem and invariant regions. J. Hyperbolic Differ. Equ. 3(4), 649–672 (2006)
Dolbeault, J., Markowich, P.A., Ölz, D., Schmeiser, C.: Nonlinear diffusion as limit of kinetic equations with relaxation collision kernels. Arch. Ration. Mech. Anal. 186, 133–158 (2007)
Dubroca, B.: Etude de régimes microscopiques, macroscopiques et transitionnels basés sur des équations cinétiques: modélisation et approximation numérique. Habilitation à diriger les recherches. Université Bordeaux 1 (2000)
Filbet, F., Sonnendrücker, E.: Comparison of Eulerian Vlasov solvers. Comput. Phys. Commun. 150, 247–266 (2003)
Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187 (2001)
Fort, J.: Information-theoretical approach to radiative transfer. Physica A 243(3/4), 275–303 (1997)
Giga, Y., Miyakawa, T.: A kinetic construction of global solutions of first order quasilinear equations. Duke Math. J. 50(2), 505–515 (1983)
Godillon-Lafitte, P., Goudon, Th.: A coupled model for radiative transfer: Doppler effects, equilibrium and non equilibrium diffusion asympotics. SIAM MMS 4, 1245–1279 (2005)
Golse, F.: Kinetic equations and asymptotic theory. In: From Kinetic to Macroscopic Model. Appl. Math., vol. 4, pp. 41–121. Gauthier-Villars, Paris (2000)
Golse, F., Jin, S., Levermore, C.D.: A domain decomposition analysis for a two-scale linear transport problem. Math. Model. Numer. Anal. 37(6), 869–892 (2003)
Gosse, L., Toscani, G.: An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations. C. R. Math. Acad. Sci. Paris 334(4), 337–342 (2002)
Gosse, L., Toscani, G.: Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation. Numer. Math. 98(2), 223–250 (2004)
Goudon, Th., Lafitte, P.: Splitting schemes for the simulation of non equilibrium radiative flows. Preprint (2006)
Goudon, Th., Mellet, A.: On fluid limit for the semiconductors Boltzmann equation. J. Differ. Equ. 189(1), 17–45 (2003)
Goudon, Th., Poupaud, F.: Approximation by homogenization and diffusion of kinetic equations. Commun. Partial Differ. Equ. 26(3/4), 537–569 (2001)
Jin, S., Pareschi, L., Toscani, G.: Diffusive relaxation schemes for discrete-velocity kinetic equations. SIAM J. Numer. Anal. 35, 2405–2439 (1998)
Jin, S., Pareschi, L., Toscani, G.: Uniformly accurate diffusive relaxation schemes for multiscale transport equations. SIAM J. Numer. Anal. 38, 913–936 (2000)
Jin, S., Xin, Z.-P.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48, 235–276 (1995)
Klar, A.: An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35(3), 1073–1094 (1998) (electronic)
Klar, A.: An asymptotic preserving numerical scheme for kinetic equations in the low Mach number limit. SIAM J. Numer. Anal. 36(5), 1507–1527 (1999) (electronic)
Klar, A., Unterreiter, A.: Uniform stability of a finite difference scheme for transport equations in diffusive regime. SIAM J. Numer. Anal. 40(3), 891–913 (2002) (electronic)
Levermore, C.D.: A Chapman–Enskog approach to flux limited diffusion theory. Technical report, Lawrence Livermore Laboratory, UCID-18229 (1979)
Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5/6), 1021–1065 (1996)
Levermore, C.D.: Entropy-based moment closures for kinetic equations. In: Proceedings of the International Conference on Latest Developments and Fundamental Advances in Radiative Transfer, Los Angeles, CA, 1996, vol. 26, pp. 591–606 (1997)
Levermore, C.D., Morokoff, W.J.: The Gaussian moment closure for gas dynamics. SIAM J. Appl. Math. 59(1), 72–96 (1999) (electronic)
Levermore, C.D., Pomraning, G.C.: A flux-limited diffusion theory. Astrophys. J. 248, 321–334 (1981)
Lions, P.-L., Perthame, B., Souganidis, P.: Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Commun. Pure Appl. Math. 49(6), 599–638 (1996)
Lions, P.-L., Perthame, B., Tadmor, E.: Kinetic formulation of the isentropic gas dynamics and p-systems. Commun. Math. Phys. 163(2), 415–431 (1994)
Lions, P.-L., Toscani, G.: Diffuse limit for finite velocity Boltzmann kinetic models. Revista Matematica Iberoamericana 13, 473–513 (1997)
Liotta, F., Romano, V., Russo, G.: Central scheme for balance law of relaxation type. SIAM J. Numer. Anal. 38, 1337–1356 (2000)
Naldi, G., Pareschi, L., Toscani, G.: Relaxation schemes for partial differential equations and applications to degenerate diffusion problems. Surv. Math. Ind. 10(4), 315–343 (2002)
Natalini, R.: A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws. J. Differ. Equ. 148(2), 292–317 (1998)
Olson, G.L., Auer, L.H., Hall, M.L.: Diffusion, P1, and other approximation of radiation transport. JQSRT 64, 619–634 (2000)
Perthame, B.: Kinetic formulation of conservation laws. In: Oxford Lecture Series in Mathematics and its Applications, vol. 21. Oxford University Press, Oxford (2002)
Perthame, B., Tadmor, E.: A kinetic equation with kinetic entropy functions for scalar conservation laws. Commun. Math. Phys. 136(3), 501–517 (1991)
Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Cetraro, 1997. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998)
Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)
Su, B., Olson, G.L.: Analytical benchmark for non-equilibrium radiative transfer in anisotropically scattering medium. Ann. Nucl. Energy 24(13), 1035–1055 (1997)
Yang, X., Golse, F., Huang, Z., Jin, S.: Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks Heterog. Media 1(1), 143–166 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Carrillo, J.A., Goudon, T., Lafitte, P. et al. Numerical Schemes of Diffusion Asymptotics and Moment Closures for Kinetic Equations. J Sci Comput 36, 113–149 (2008). https://doi.org/10.1007/s10915-007-9181-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-007-9181-5