[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Numerical Schemes of Diffusion Asymptotics and Moment Closures for Kinetic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We investigate different models that are intended to describe the small mean free path regime of a kinetic equation, a particular attention being paid to the moment closure by entropy minimization. We introduce a specific asymptotic-induced numerical strategy which is able to treat the stiff terms of the asymptotic diffusive regime. We evaluate on numerics the performances of the method and the abilities of the reduced models to capture the main features of the full kinetic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aregba-Driollet, D., Natalini, R.: Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37(6), 1973–2004 (2000) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bardos, C., Golse, F., Perthame, B., Sentis, R.: The nonaccretive radiative transfer equations: existence of solutions and Rosseland approximation. J. Funct. Anal. 77(2), 434–460 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bardos, C., Santos, R., Sentis, R.: Diffusion approximation and computation of the critical size. Trans. Am. Math. Soc. 284(2), 617–649 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brenier, Y.: Systèmes Hyperboliques de Lois de Conservation. Cours de DEA 92/93. Publ. Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, Paris (1992)

    Google Scholar 

  5. Buet, C., Cordier, S.: Asymptotic preserving scheme and numerical methods for radiative hydrodynamic models. C. R. Math. Acad. Sci. Paris 338(12), 951–956 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Buet, C., Despres, B.: Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics. JQSRT 85(3/4), 385–418 (2004)

    Google Scholar 

  7. Buet, C., Despres, B.: Asymptotic preserving and positive schemes for radiation hydrodynamics. J. Comput. Phys. 215(2), 717–740 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carrillo, J.A., Gamba, I.M., Shu, C.-W.: Computational macroscopic approximations to the one-dimensional relaxation-time kinetic system for semiconductors. Physica D 146, 289–306 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Carrillo, J.A., Goudon, Th., Lafitte, P.: Simulation of fluid particles flows: asymptotic preserving schemes for bubbling and flowing regimes. Preprint UAB

  10. Carrillo, J.A., Vecil, F.: Non oscillatory interpolation methods applied to Vlasov-based models. SIAM J. Sci. Comput. 29, 1179–1206 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cartier, J., Munnier, A.: Geometric Eddington factor for radiative transfer problems. In: Numerical Methods for Hyperbolic and Kinetic Problems. IRMA Lectures in Mathematics and Theoretical Physics, vol. 7, pp. 271–293. Eur. Math. Soc., Zürich (2005)

    Google Scholar 

  12. Chavanis, P.H., Sommeria, J., Robert, R.: Statistical mechanics of two-dimensional vortices and collisionless stellar systems. Astrophys. J. 471, 385–399 (1996)

    Article  Google Scholar 

  13. Coulombel, J.-F., Golse, F., Goudon, Th.: Diffusion approximation and entropy-based moment closure for kinetic equations. Asymptot. Anal. 45(1/2), 1–39 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Coulombel, J.-F., Goudon, Th.: Entropy-based moment closure for kinetic equations: Riemann problem and invariant regions. J. Hyperbolic Differ. Equ. 3(4), 649–672 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dolbeault, J., Markowich, P.A., Ölz, D., Schmeiser, C.: Nonlinear diffusion as limit of kinetic equations with relaxation collision kernels. Arch. Ration. Mech. Anal. 186, 133–158 (2007)

    Article  MathSciNet  Google Scholar 

  16. Dubroca, B.: Etude de régimes microscopiques, macroscopiques et transitionnels basés sur des équations cinétiques: modélisation et approximation numérique. Habilitation à diriger les recherches. Université Bordeaux 1 (2000)

  17. Filbet, F., Sonnendrücker, E.: Comparison of Eulerian Vlasov solvers. Comput. Phys. Commun. 150, 247–266 (2003)

    Article  Google Scholar 

  18. Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fort, J.: Information-theoretical approach to radiative transfer. Physica A 243(3/4), 275–303 (1997)

    Article  Google Scholar 

  20. Giga, Y., Miyakawa, T.: A kinetic construction of global solutions of first order quasilinear equations. Duke Math. J. 50(2), 505–515 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Godillon-Lafitte, P., Goudon, Th.: A coupled model for radiative transfer: Doppler effects, equilibrium and non equilibrium diffusion asympotics. SIAM MMS 4, 1245–1279 (2005)

    MATH  MathSciNet  Google Scholar 

  22. Golse, F.: Kinetic equations and asymptotic theory. In: From Kinetic to Macroscopic Model. Appl. Math., vol. 4, pp. 41–121. Gauthier-Villars, Paris (2000)

    Google Scholar 

  23. Golse, F., Jin, S., Levermore, C.D.: A domain decomposition analysis for a two-scale linear transport problem. Math. Model. Numer. Anal. 37(6), 869–892 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gosse, L., Toscani, G.: An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations. C. R. Math. Acad. Sci. Paris 334(4), 337–342 (2002)

    MATH  MathSciNet  Google Scholar 

  25. Gosse, L., Toscani, G.: Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation. Numer. Math. 98(2), 223–250 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Goudon, Th., Lafitte, P.: Splitting schemes for the simulation of non equilibrium radiative flows. Preprint (2006)

  27. Goudon, Th., Mellet, A.: On fluid limit for the semiconductors Boltzmann equation. J. Differ. Equ. 189(1), 17–45 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Goudon, Th., Poupaud, F.: Approximation by homogenization and diffusion of kinetic equations. Commun. Partial Differ. Equ. 26(3/4), 537–569 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jin, S., Pareschi, L., Toscani, G.: Diffusive relaxation schemes for discrete-velocity kinetic equations. SIAM J. Numer. Anal. 35, 2405–2439 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Jin, S., Pareschi, L., Toscani, G.: Uniformly accurate diffusive relaxation schemes for multiscale transport equations. SIAM J. Numer. Anal. 38, 913–936 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Jin, S., Xin, Z.-P.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48, 235–276 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Klar, A.: An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35(3), 1073–1094 (1998) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  33. Klar, A.: An asymptotic preserving numerical scheme for kinetic equations in the low Mach number limit. SIAM J. Numer. Anal. 36(5), 1507–1527 (1999) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  34. Klar, A., Unterreiter, A.: Uniform stability of a finite difference scheme for transport equations in diffusive regime. SIAM J. Numer. Anal. 40(3), 891–913 (2002) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  35. Levermore, C.D.: A Chapman–Enskog approach to flux limited diffusion theory. Technical report, Lawrence Livermore Laboratory, UCID-18229 (1979)

  36. Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5/6), 1021–1065 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  37. Levermore, C.D.: Entropy-based moment closures for kinetic equations. In: Proceedings of the International Conference on Latest Developments and Fundamental Advances in Radiative Transfer, Los Angeles, CA, 1996, vol. 26, pp. 591–606 (1997)

  38. Levermore, C.D., Morokoff, W.J.: The Gaussian moment closure for gas dynamics. SIAM J. Appl. Math. 59(1), 72–96 (1999) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  39. Levermore, C.D., Pomraning, G.C.: A flux-limited diffusion theory. Astrophys. J. 248, 321–334 (1981)

    Article  Google Scholar 

  40. Lions, P.-L., Perthame, B., Souganidis, P.: Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Commun. Pure Appl. Math. 49(6), 599–638 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  41. Lions, P.-L., Perthame, B., Tadmor, E.: Kinetic formulation of the isentropic gas dynamics and p-systems. Commun. Math. Phys. 163(2), 415–431 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  42. Lions, P.-L., Toscani, G.: Diffuse limit for finite velocity Boltzmann kinetic models. Revista Matematica Iberoamericana 13, 473–513 (1997)

    MATH  MathSciNet  Google Scholar 

  43. Liotta, F., Romano, V., Russo, G.: Central scheme for balance law of relaxation type. SIAM J. Numer. Anal. 38, 1337–1356 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  44. Naldi, G., Pareschi, L., Toscani, G.: Relaxation schemes for partial differential equations and applications to degenerate diffusion problems. Surv. Math. Ind. 10(4), 315–343 (2002)

    MATH  MathSciNet  Google Scholar 

  45. Natalini, R.: A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws. J. Differ. Equ. 148(2), 292–317 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  46. Olson, G.L., Auer, L.H., Hall, M.L.: Diffusion, P1, and other approximation of radiation transport. JQSRT 64, 619–634 (2000)

    Google Scholar 

  47. Perthame, B.: Kinetic formulation of conservation laws. In: Oxford Lecture Series in Mathematics and its Applications, vol. 21. Oxford University Press, Oxford (2002)

    Google Scholar 

  48. Perthame, B., Tadmor, E.: A kinetic equation with kinetic entropy functions for scalar conservation laws. Commun. Math. Phys. 136(3), 501–517 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  49. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Cetraro, 1997. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998)

    Chapter  Google Scholar 

  50. Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  51. Su, B., Olson, G.L.: Analytical benchmark for non-equilibrium radiative transfer in anisotropically scattering medium. Ann. Nucl. Energy 24(13), 1035–1055 (1997)

    Article  Google Scholar 

  52. Yang, X., Golse, F., Huang, Z., Jin, S.: Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks Heterog. Media 1(1), 143–166 (2006)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Carrillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo, J.A., Goudon, T., Lafitte, P. et al. Numerical Schemes of Diffusion Asymptotics and Moment Closures for Kinetic Equations. J Sci Comput 36, 113–149 (2008). https://doi.org/10.1007/s10915-007-9181-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9181-5

Keywords

Navigation