We present BDF type formulas of high-order (4, 5 and 6), capable of the exact integration (with only round-off errors) of differential equations whose solutions are linear combinations of an exponential with parameter A and ordinary polynomials. For A = 0, the new formulas reduce to the classical BDF formulas. Theorems of the local truncation error reveal the good behavior of the new methods with stiff problems. Plots of their 0-stability regions in terms of the eigenvalues of the parameter A h are provided. Plots of their absolute stability regions that include the whole of the negative real axis are provided. The weights of the method usually require the evaluation of a matrix exponential. However, if the dimension of the matrix is large, we shall not perform this calculus and shall only approximate those coefficients once. Numerical examples underscore the efficiency of the proposed codes, especially when one is integrating stiff oscillatory problems.
Similar content being viewed by others
References
Butcher J.C., Chen D.J.L. (2001). On the implementation of ESIRK methods for stiff IVPs. Numer. Algorithms 26: 201–218
Butcher J.C., Rattenbury N. (2005). ARK methods for stiff problems. Appl. Num. Math. 53: 165–181
Cash J.R. (1980). On the integration of stiff systems of ODE’s using extended backward differentiation formulae. Numer. Math. 37: 235–246
Cash J.R. (1983). The integration of stiff initial value problems in ODE’s using modified extended backward differentiation formulae. Comput. Math. Appl. 9: 645–657
Coleman J.P., Ixaru L. Gr. (1996). P-stability and exponential-fitting methods for y′′ = f(x,y). IMA J. Numer. Anal. 16: 179–199
Cox S.M., Matthews P.C. (2002). Exponential time differencing for stiff systems. J. Comput. Phys. 176: 430–455
Enright W.H. (1974). Optimal second derivative methods for stiff systems. In: Willoughby R.A. (eds) Stiff Differential Systems. Plenum Press, New York, pp. 95–111
Eriksson K., Johnson C., Logg A. (2003). Explicit time-stepping for stiff ODE’s. SIAM J. Sci. Comput. 25(4): 1142–1157
Hairer, E., Norsett, P., and Wanner, G. (1993). Solving Ordinary Differential Equations I, Springer, Berlin. Second Revised Edition.
Kaps, P. (1981). Rosenbrock-type methods, In Dahlquist, G., and Jeltsch, R. (ed.), Numerical Methods for Stiff Initial Value Problems, Bericht nr. 9. Inst für Geometrie und Praktische Mathematik der RWTH Aachen, Templergraben 55, D-5100 Aachen.
Frank, J. E., and van der Houwen, P. J. (1999). Parallel Iteration of the Extended Backward Differentiation Formulas, Report MAS-R9913, CWI.
Hochbruck M., Lubich Ch., Selhofer H. (1998). Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19: 1552–1574
Ixaru L.Gr., Rizea M., De Meyer H., Vanden Berghe G. (2001). Weights of the exponential fitting multistep algorithms for ODEs. J. Comput. Appl. Math. 132: 83–93
Ixaru L.Gr., Vanden Berghe G., De Meyer H. (2002). Frequency evaluation in exponential fitting multistep algorithms for ODEs. J. Comput. Appl. Math. 140: 423–434
Ixaru L.Gr., Vanden Berghe G., De Meyer H. (2003). Exponentially fitted variable two-step BDF algorithms for first order ODEs. Comput. Phys. Commun. 100: 56–70
Kassam A.K., Trefethen Ll.N. (2005). Fourth-order time stepping for stiff PDEs. SIAM J. Sci. Comput. 26: 1214–1233
Lambert, J. D. (1991). Numerical Methods for Ordinary Differential Systems. The initial Value Problem, Wiley, Chichester.
Moler C.B., Van Loan C.F. (1978). Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 29(4): 801–836
Martín-Vaquero J., Vigo-Aguiar J. (2006). Exponential fitting BDF algorithms: explicit and implicit 0-stable methods. J. Comp. Appl. Math. 192: 100-113
Robertson, H. H. (1966). The Solution of a Set Of Reaction Rate equations, Academic New York, pp. 178–182.
Sidge R.B. (1998). Expokit: software package for computing matrix exponentials. ACM Trans. Math. Softw. 24(1): 130–156
Van de Vyver H. (2005). Frequency evaluation for exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 184(2): 442–463
Vigo-Aguiar J., Ferrándiz J.M. (1998). A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems. SIAM J. Numer. Anal. 35(4): 1684–1708
Vigo-Aguiar J. (1999). An approach to variable coefficients multistep methods for special differential equations. Int. J. Appl. Math. 1(8): 911–921
Vigo-Aguiar J., Martín-Vaquero J., Criado R. (2005). On the stability of exponential fitting BDF algorithms. J. Comput. Appl. Math. 175(1): 183–194
Walz, G. (1988). Numerical Computation of the Matrix Exponential, Constructive theory of functions, Publ. House Bulgar. Acad. Sci., MathSciNet, Sofia, pp. 478–481.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Martín-Vaquero, J., Vigo-Aguiar, J. Adapted BDF Algorithms: Higher-order Methods and Their Stability. J Sci Comput 32, 287–313 (2007). https://doi.org/10.1007/s10915-007-9132-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-007-9132-1