Abstract
In recent years the concept of fully adaptive multiscale finite volume schemes for conservation laws has been developed and analytically investigated. Here the grid adaptation is performed by means of a multiscale analysis. So far, all cells are evolved in time using the same time step size. In the present work this concept is extended incorporating locally varying time stepping. A general strategy is presented for explicit as well as implicit time discretization. The efficiency and the accuracy of the proposed concept is verified numerically.
Similar content being viewed by others
References
Abgrall R. (1997). Multiresolution analysis on unstructured meshes: applications to CFD. In: Chetverushkin B. et al. (eds) Experimentation, Modelling and Computation in Flow, Turbulence and Combustion. Wiley, New York
Andreae S., Ballmann J., Müller S. (2005). Wave processes at interfaces. In: Warnecke G. (eds) Analysis and Numerics for Conservation Laws. Springer, Berlin, pp. 1–26
Andreae S., Ballmann J., Müller S., Voß A. (2003). Dynamics of collapsing bubbles near walls. In: Hou T., Tadmor E. (eds) Hyperbolic Problems: Theory, Numerics, Applications. Springer Verlag, Berlin, pp. 265–272
Arandiga F., Donat R., Harten A. (1998). Multiresolution based on weighted averages of the hat function I: linear reconstruction techniques. SIAM J. Numer. Anal. 36(1):160–203
Arandiga F., Donat R., Harten A. (1999). Multiresolution based on weighted averages of the hat function II: non-linear reconstruction techniques. SIAM J. Sci. Comput. 20(3):1053–1093
Bell J., Berger M., Saltzman J., Welcome M. (1994). Three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comput. 15(1):127–138
Berger M. (1985). Stability of interfaces with mesh refinement. Math. Comp. 45:301–318
Berger M. (1987). On conservation at grid interfaces. SIAM J. Numer. Anal. 24:967–984
Berger M., Colella P. (1989). Local adaptive mesh refinement for shock hydrodynamics. J. Comp. Phys. 82:64–84
Berger M., and LeVeque R. (1998). Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal. 35(6):2298–2316
Berger M., and Oliger J. (1984). Adaptive mesh refinement for hyperbolic partial differential equations. J. Comp. Phys. 53:484–512
Bihari B., and Harten A. (1995). Application of generalized wavelets: An adaptive multiresolution scheme. J. Comp. Appl. Math. 61:275–321
Bihari B., and Harten A. (1997). Multiresolution schemes for the numerical solution of 2–D conservation laws I. SIAM J. Sci. Comput. 18(2):315–354
Bihari B., Ota D., Liu Z., Ramakrishnan S. (2002). The multiresolution method on general unstructured meshes. AIAA J. 40(7):1323–1330
Bramkamp F., Gottschlich-Müller B., Hesse M., Lamby P., Müller S., Ballmann J., Brakhage K.H., Dahmen W. (2003). H-adaptive multiscale schemes for the compressible Navier–Stokes equations – polyhedral discretization, data compression and mesh generation. In: Ballmann J. (eds) Flow Modulation and Fluid-Structure-Interaction at Airplane Wings. Numerical Notes on Fluid Mechanics, Vol. 84, Springer, Berlin, pp. 125–204
Bramkamp F., Lamby P., and Müller S. (2004). An adaptive multiscale finite volume solver for unsteady an steady state flow computations. J. Comp. Phys. 197(2):460–490
Carnicer J., Dahmen W., Peña J. (1996). Local decomposition of refinable spaces and wavelets. Appl. Comput. Harmon. Anal. 3:127–153
Chiavassa G., Donat R. (2001). Point value multiresolution for 2D compressible flows. SIAM J. Sci. Comput. 23(3):805–823
Chiavassa G., Donat, R., and Marquina, A. (2002). Fine–mesh numerical simulations for 2D riemann problems with a multilevel scheme. In Warnecke, G., Freistühler, H. (eds.), Hyperbolic Problems: Theory, Numerics, Applications, Birkhäuser, pp. 247–256
Cohen A., Dyn N., Kaber S., Postel M. (2000). Multiresolution finite volume schemes on triangles. J. Comp. Phys. 161:264–286
Cohen A., Kaber S., Müller S., Postel M. (2003). Fully Adaptive Multiresolution Finite Volume Schemes for Conservation Laws. Math. Comp. 72(241):183–225
Cohen, A., Kaber, S., and Postel, M. (2002). Multiresolution analysis on triangles: application to gas dynamics. In Warnecke, G., Freistühler, H. (eds.), Hyperbolic Problems: Theory, Numerics, Applications, Birkhäuser, pp. 257–266.
Dahmen W., Gottschlich–Müller B., Müller S. (2000). Multiresolution schemes for conservation laws. Numer. Math. 88(3):399–443
Dahmen W., Müller S., Voß A. (2005). Riemann problem for the Euler equations with non-convex equation of state including phase transitions. In: Warnecke G. (eds) Analysis and Numerics for Conservation Laws. Springer, Berlin, pp. 137–162
Dawson C., Kirby R. (2001). High resolution schemes for conservation laws with locally varying time steps. SIAM J. Sci. Comput. 22(6):2256–2281
Engquist B., Osher S. (1981). One-sided difference approximations for nonlinear conservation laws. Math. Comp. 36:321–352
Gottschlich–Müller, B., and Müller, S. (1999). Adaptive finite volume schemes for conservation laws based on local multiresolution techniques. In Fey, M., and Jeltsch R. (eds.), Hyperbolic Problems: Theory, Numerics, Applications, Birkhäuser, pp. 385–394.
Harten A. (1995). Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Comm. Pure Appl. Math. 48(12):1305–1342
Harten A. (1996). Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33(3):1205–1256
Harten A., Engquist B., Osher S., Chakravarthy S. (1987). Uniformly high order accurate essentially non–oscillatory schemes III. J. Comp. Phys. 71:231–303
Houston P., Mackenzie J., Süli E., Warnecke G. (1999). A posteriori error analysis for numerical approximations of Friedrichs systems. Numer. Math. 82:433–470
Jameson L. (2003). AMR vs high order schemes. J. Sci. Comput. 18(1):1–24
Kröner D., Ohlberger M. (1999). A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions. Math. Comp. 69(229):25–39
Lamby, P., Massjung, R., Müller, S., and Stiriba, Y. (2005). Inviscid flow on moving grids with multiscale space and time adaptivity (2005). Submitted for publication in Proceedings of 6th European Conference on Numerical Methods and Advanced Mathematics, July, 18–22, Santiago de Compostela, Spain.
Lamby P., Müller S., Stiriba Y. (2005). Solution of shallow water equations using fully adaptive multiscale schemes. Int. J. Numer. Methods Fluids 49(4):417–437
Müller S. (2002). Adaptive multiresolution schemes. In: Herbin B., Kröner D. (eds) Finite Volumes for Complex Applications. Hermes Science, Paris
Müller, S. (2002). Adaptive multiscale schemes for conservation laws. Lecture Notes on Computational Science and Engineering, vol. 27, Springer, Berlin.
Müller, S., and Stiriba, Y. (2004). Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping. IGPM–Report 238, RWTH Aachen.
Osher S., Sanders R. (1983). Numerical approximations to nonlinear conservation laws with locally varying time and space grids. Math. Comp. 41:321–336
Rault A., Chiavassa G., Donat R. (2003). Shock-vortex interactions at high Mach numbers. J. Sci. Comput. 19:347–371
Roussel O., Schneider K., Tsigulin A., Bockhorn H. (2003). A conservative fully adaptive multiresolution algorithm for parabolic PDEs. J. Comput. Phys. 188(2):493–523
Sonar T.V., and Hannemann D.H. (1994). Dynamic adaptivity and residual control in unsteady compressible flow computation. Math. Comput. Model. 20:201–213
Sonar T.E.S. (1998). A dual graph–norm refinement indicator for finite volume approximations of the Euler equations. Numer. Math. 78:619–658
Tang H., and Warnecke G. (2006). A class of high resolution schemes for hyperbolic conservation laws and convection-diffusion equations with varying time and space grids. J. Comp. Math. 24(2):121–140
Trompert R., and Verwer J. (1993). Analysis of the implicit Euler local uniform grid refinement method. SIAM J. Sci. Comput. 14(2):259–278
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Müller, S., Stiriba, Y. Fully Adaptive Multiscale Schemes for Conservation Laws Employing Locally Varying Time Stepping. J Sci Comput 30, 493–531 (2007). https://doi.org/10.1007/s10915-006-9102-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-006-9102-z