[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Numerical Methods and Nature

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

In many numerical procedures one wishes to improve the basic approach either to improve efficiency or else to improve accuracy. Frequently this is based on an analysis of the properties of the discrete system being solved. Using a linear algebra approach one then improves the algorithm. We review methods that instead use a continuous analysis and properties of the differential equation rather than the algebraic system. We shall see that frequently one wishes to develop methods that destroy the physical significance of intermediate results. We present cases where this procedure works and others where it fails. Finally we present the opposite case where the physical intuition can be used to develop improved algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allmaras, S. (1993). Analysis of a local matrix preconditioner for the 2-D Navier-Stokes equations. AIAA Paper 93-3330.

  2. Bayliss A, Goldstein C.I., Turkel E. (1983). An iterative method for the Helmholtz equation. J. Comput. Phys. 49, 443–457

    Article  MATH  MathSciNet  Google Scholar 

  3. Bayliss A., Goldstein C., Turkel E. (1985). On accuracy conditions for the numerical computation of waves. J. Comput. Phys. 59, 396–404

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Bayliss A., Gunzburger M., Turkel E. (1982). Boundary conditions for the numerical solution of elliptic equations in exterior regions. SIAM J. Appl. Math. 42, 430–451

    Article  MATH  MathSciNet  Google Scholar 

  5. Caughey D.A., Jameson, A. (1992). Fast preconditioned multigrid solution of the euler and Navier–Stokes equations for steady compressible flows. AIAA Paper 2002-0963.

  6. Erlangga, Y. A., Vuik C., and Oosterlee, C. W. (2004). On a class of preconditioners for the Helmholtz equation. Appl. Numer. Math. 50, 409–425.

    Google Scholar 

  7. Erlangga Y.A., Oosterlee C.W., Vuik C. (2006). A novel multigrid based preconditioner for heterogenous Helmholtz problems. Scient. Comput. 27, 1471–1492

    Article  MATH  MathSciNet  Google Scholar 

  8. Gozani, J., Nachshon, A., and Turkel, E. (1984). Conjugate gradient coupled with multigrid for an indefinite problem. Adv. Comput. Meth. PDEs V. 425–427.

  9. Jameson, A., Schmidt, W., and Turkel, E. (1981). Numerical solutions of the Euler equations by a finite volume method using Runge–Kutta time-stepping schemes. AIAA Paper 81-1259.

  10. Jameson A. (1995). Analysis and design of numerical schemes for gas dynamics I: artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid cobergence. Inter. J. Comput. Fluid D. 4, 171–218

    Google Scholar 

  11. Laird A.L., Giles M. (2002). Preconditioned iterative solution of the 2D Helmholtz equation. Report 02/12 Oxford Computer Lab, Oxford, UK

    Google Scholar 

  12. Natalini R. (1999). Recent mathematical results on hyperbolic relaxation problems Analysis of systems of conservation laws. Chapman and HallCRC, Boca Raton, FL, 128–198.

    Google Scholar 

  13. Pierce N.A., Giles M.B. (1997). Preconditioned multigrid methods for compressible flow codes on stretched meshes. J. Comput. Phys. 136, 425–445

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Singer I., Turkel E. (2004). A Perfectly matched layer for the Helmholtz equation in a semi-infinite strip. J. Comput. Phys. 201, 439–465

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Turkel E. (1987). Preconditioned methods for solving the incompressible and low speed compressible equations. J. Comput. Phys. 72, 277–298

    Article  MATH  ADS  Google Scholar 

  16. Turkel E. (1993). A review of preconditioning methods for fluid dynamics. Appl. Numer. Math. 12, 257–284

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Turkel, E., Fiterman, A., and van Leer, B. (1994). Preconditioning and the limit of the compressible to the incompressible flow equations for finite difference schemes. In Caughey, D. A., and Hafez, M. M. (eds.), Frontiers of Computational Fluid Dynamics 1994, John Wiley and Sons, 215–234.

  18. Turkel, E. (1997). Preconditioning-squared methods for multidimensional aerodynamics. AIAA Paper 97-2025.

  19. Turkel E. (1999). Preconditioning techniques in computational fluid dynamics. Ann. Rev. Fluid Mech. 31, 385–416

    Article  MathSciNet  ADS  Google Scholar 

  20. Turkel E. (2001). Numerical difficulties solving time harmonic equations. In: Brandt A., Bernholc J., Binder K. (eds). Multiscale Computational Methods in Chemistry and Physics. IOS Press, Ohmsha, pp. 319–337

    Google Scholar 

  21. Turkel, E. (2002). Robust preconditioning for steady and unsteady viscous flows, 33rd AIAA fluid dynamics conference, Reno NV, AIAA paper 02-0962.

  22. Turkel E., Farhat C., Hetmaniuk U. (2004). Improved accuracy for the Helmholtz equation in unbounded domains. Inter. J. Numer. Meth. Eng. 59, 1963–1988

    Article  MATH  MathSciNet  Google Scholar 

  23. Turkel E., Vatsa V.N. (2005). Local preconditioners for steady state and dual time-stepping. Math. Model. Numer. Anal. ESAIM: M2AN 39(3): 515–536

    Article  MATH  MathSciNet  Google Scholar 

  24. van Leer, B., Lee, W. T., and Roe, P. L. (1991). Characteristic time-stepping or local preconditioning of the Euler equations. AIAA Paper 91-1552.

  25. Vatsa V.N., Wedan B.W. (1990). Development of a multigrid code for 3-d Navier-stokes equations and its application to a grid-refinement study. Comput. Fluids 18, 391–403

    Article  MATH  Google Scholar 

  26. Venkata Reddy P., Raghurama Rao S.V. (2005). A new Euler solver with pressure relaxation. Fluid Mechanics Report, Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Turkel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turkel, E. Numerical Methods and Nature. J Sci Comput 28, 549–570 (2006). https://doi.org/10.1007/s10915-006-9082-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9082-z

Keywords

Navigation