[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Family of Discontinuous Galerkin Finite Elements for the Reissner–Mindlin Plate

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a family of locking-free elements for the Reissner–Mindlin plate using Discontinuous Galerkin (DG) techniques, one for each odd degree, and prove optimal error estimates. A second family uses conforming elements for the rotations and nonconforming elements for the transverse displacement, generalizing the element of Arnold and Falk to higher degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Refernces

  • S. Agmon (1965) Lectures on Elliptic Boundary Value Problems Van Nostrand Mathematical Studies Princeton, NJ

    Google Scholar 

  • D.N. Arnold (1982) ArticleTitleAn interior penalty finite element method with discontinuous elements SIAM J. Numer. Anal. 19 742–760 Occurrence Handle10.1137/0719052

    Article  Google Scholar 

  • Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D. (2000). Discontinuous Galerkin methods for elliptic problems. In Discontinuous Galerkin Methods (Newport, RI, 1999), Lecture Notes Computational Science Engineering Vol. 11, Springer, Berlin, pp.89–101.

  • D.N. Arnold F. Brezzi B. Cockburn L.D. Marini (2002) ArticleTitleUnified analysis of discontinuous Galerkin methods for elliptic problems SIAM J. Numer. Anal. 39 1749–1779 Occurrence Handle10.1137/S0036142901384162

    Article  Google Scholar 

  • D.N. Arnold R.S. Falk (1989) ArticleTitleA uniformly accurate finite element method for the Reissner–Mindlin plate SIAM J. Numer. Anal. 26 1276–1290 Occurrence Handle10.1137/0726074

    Article  Google Scholar 

  • F. Auricchio C. Lovadina (1999) ArticleTitlePartial selective reduced integration schemes and kinematically linked interpolations for plate bending problems Math. Models Meth. Appl. Sci. 9 693–722 Occurrence Handle10.1142/S021820259900035X

    Article  Google Scholar 

  • F. Auricchio C. Lovadina (2001) ArticleTitleAnalysis of kinematic linked interpolation methods for Reissner–Mindlin plate problems Comput. Meth. Appl. Mech. Eng. 190 18–19

    Google Scholar 

  • F. Auricchio R.L. Taylor (1994) ArticleTitleA shear deformable plate element with an exact thin limit Comput. Meth. Appl. Mech. Eng. 118 393–412 Occurrence Handle10.1016/0045-7825(94)90009-4

    Article  Google Scholar 

  • K.J. Bathe (1994) Finite Element Procedures Prentice-Hall Englewood Cliffs, NJ

    Google Scholar 

  • S.C. Brenner (2003) ArticleTitlePoincaré–Friedrichs inequalities for piecewise H 1 functions SIAM J. Numer. Anal. 41 306–324 Occurrence Handle10.1137/S0036142902401311

    Article  Google Scholar 

  • S.C. Brenner (2004) ArticleTitleKorn’s inequalities for piecewise H 1 vector fields Math. Comput. 73 1067–1087 Occurrence Handle10.1090/S0025-5718-03-01579-5

    Article  Google Scholar 

  • F. Brezzi K.J. Bathe M. Fortin (1989) ArticleTitleMixed-interpolated elements for Reissner–Mindlin plates Int. J. Numer. Meth. Eng. 28 1787–1801 Occurrence Handle10.1002/nme.1620280806

    Article  Google Scholar 

  • F. Brezzi J. Douglas SuffixJr. L. D. Marini (1985) ArticleTitleTwo families of mixed finite elements for second order elliptic problems Numer. Math. 47 217–235 Occurrence Handle10.1007/BF01389710

    Article  Google Scholar 

  • F. Brezzi M. Fortin (1999) Mixed and Hybrid Finite Element Methods Springer New York

    Google Scholar 

  • F. Brezzi M. Fortin R. Stenberg (1991) ArticleTitleError analysis of mixed-interpolated elements for Reissner–Mindlin plates Math. Models Meth. Appl. Sci. 1 125–151 Occurrence Handle10.1142/S0218202591000083

    Article  Google Scholar 

  • F. Brezzi L.D. Marini (2003) ArticleTitleA nonconforming element for the Reissner–Mindlin plate Comput. Struct. 81 515–522 Occurrence Handle10.1016/S0045-7949(02)00418-2

    Article  Google Scholar 

  • M.L. Bucalem K.J. Bathe (1997) ArticleTitleFinite element analysis of shell structures Arch. Comput. Meth. Eng. 4 3–61

    Google Scholar 

  • M.L. Bucalem K.J. Bathe (1993) ArticleTitleHigher-order MITC general shell elements Int.J.Numer.Meth.Eng. 36 3729–3754 Occurrence Handle10.1002/nme.1620362109

    Article  Google Scholar 

  • D. Chapelle K.J. Bathe (1998) ArticleTitleFundamental considerations for the finite element analysis of shell structures Comput. Struct. 66 19–36 Occurrence Handle10.1016/S0045-7949(97)00078-3

    Article  Google Scholar 

  • D. Chapelle R. Stenberg (1999) ArticleTitleStabilized finite element formulations for shells in a bending dominated state SIAMJ.Numer.Anal. 36 32–73 Occurrence Handle10.1137/S0036142996302918

    Article  Google Scholar 

  • R. Duran E. Liberman (1992) ArticleTitleOn mixed finite-element methods for the Reissner–Mindlin plate model Math.Comput. 58 561–573

    Google Scholar 

  • F.G. Flores E. Oñate F. Zaráte (1995) ArticleTitleNew assumed strain triangles for nonlinear shell analysis Comput.Mech. 17 107–114

    Google Scholar 

  • P. Hansbo M.G. Larson (2000) Discontinuous Galerkin and the Crouzeix–Raviart element: Application to Elasticity Chalmers University of Technology Sweden

    Google Scholar 

  • T.J.R. Hughes (1987) The Finite Element Method: Linear Static and Dynamic Finite Element Analysis Prentice-Hall Englewood Cliffs, NJ

    Google Scholar 

  • C. Lovadina (1996) ArticleTitleA new class of mixed finite element methods for Reissner–Mindlin plates SIAM J.Numer.Anal. 33 2457–2467 Occurrence Handle10.1137/S0036142994265061

    Article  Google Scholar 

  • C. Lovadina (1998) ArticleTitleAnalysis of a mixed finite element method for the Reissner–Mindlin plate problems Comput. Meth. Appl. Mech. Eng. 163 71–85 Occurrence Handle10.1016/S0045-7825(98)00003-6

    Article  Google Scholar 

  • P.-B. Ming Z.-C. Shi (2001) ArticleTitleNonconforming rotated Q1 element for Reissner–Mindlin plate Math.Models Meth.Appl.Sci. 11 1311–1342 Occurrence Handle10.1142/S0218202501001343

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Donatella Marini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, D.N., Brezzi, F. & Marini, L.D. A Family of Discontinuous Galerkin Finite Elements for the Reissner–Mindlin Plate. J Sci Comput 22, 25–45 (2005). https://doi.org/10.1007/s10915-004-4134-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-004-4134-8

Keywords

Navigation