Abstract
We develop a family of locking-free elements for the Reissner–Mindlin plate using Discontinuous Galerkin (DG) techniques, one for each odd degree, and prove optimal error estimates. A second family uses conforming elements for the rotations and nonconforming elements for the transverse displacement, generalizing the element of Arnold and Falk to higher degree.
Similar content being viewed by others
Refernces
S. Agmon (1965) Lectures on Elliptic Boundary Value Problems Van Nostrand Mathematical Studies Princeton, NJ
D.N. Arnold (1982) ArticleTitleAn interior penalty finite element method with discontinuous elements SIAM J. Numer. Anal. 19 742–760 Occurrence Handle10.1137/0719052
Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D. (2000). Discontinuous Galerkin methods for elliptic problems. In Discontinuous Galerkin Methods (Newport, RI, 1999), Lecture Notes Computational Science Engineering Vol. 11, Springer, Berlin, pp.89–101.
D.N. Arnold F. Brezzi B. Cockburn L.D. Marini (2002) ArticleTitleUnified analysis of discontinuous Galerkin methods for elliptic problems SIAM J. Numer. Anal. 39 1749–1779 Occurrence Handle10.1137/S0036142901384162
D.N. Arnold R.S. Falk (1989) ArticleTitleA uniformly accurate finite element method for the Reissner–Mindlin plate SIAM J. Numer. Anal. 26 1276–1290 Occurrence Handle10.1137/0726074
F. Auricchio C. Lovadina (1999) ArticleTitlePartial selective reduced integration schemes and kinematically linked interpolations for plate bending problems Math. Models Meth. Appl. Sci. 9 693–722 Occurrence Handle10.1142/S021820259900035X
F. Auricchio C. Lovadina (2001) ArticleTitleAnalysis of kinematic linked interpolation methods for Reissner–Mindlin plate problems Comput. Meth. Appl. Mech. Eng. 190 18–19
F. Auricchio R.L. Taylor (1994) ArticleTitleA shear deformable plate element with an exact thin limit Comput. Meth. Appl. Mech. Eng. 118 393–412 Occurrence Handle10.1016/0045-7825(94)90009-4
K.J. Bathe (1994) Finite Element Procedures Prentice-Hall Englewood Cliffs, NJ
S.C. Brenner (2003) ArticleTitlePoincaré–Friedrichs inequalities for piecewise H 1 functions SIAM J. Numer. Anal. 41 306–324 Occurrence Handle10.1137/S0036142902401311
S.C. Brenner (2004) ArticleTitleKorn’s inequalities for piecewise H 1 vector fields Math. Comput. 73 1067–1087 Occurrence Handle10.1090/S0025-5718-03-01579-5
F. Brezzi K.J. Bathe M. Fortin (1989) ArticleTitleMixed-interpolated elements for Reissner–Mindlin plates Int. J. Numer. Meth. Eng. 28 1787–1801 Occurrence Handle10.1002/nme.1620280806
F. Brezzi J. Douglas SuffixJr. L. D. Marini (1985) ArticleTitleTwo families of mixed finite elements for second order elliptic problems Numer. Math. 47 217–235 Occurrence Handle10.1007/BF01389710
F. Brezzi M. Fortin (1999) Mixed and Hybrid Finite Element Methods Springer New York
F. Brezzi M. Fortin R. Stenberg (1991) ArticleTitleError analysis of mixed-interpolated elements for Reissner–Mindlin plates Math. Models Meth. Appl. Sci. 1 125–151 Occurrence Handle10.1142/S0218202591000083
F. Brezzi L.D. Marini (2003) ArticleTitleA nonconforming element for the Reissner–Mindlin plate Comput. Struct. 81 515–522 Occurrence Handle10.1016/S0045-7949(02)00418-2
M.L. Bucalem K.J. Bathe (1997) ArticleTitleFinite element analysis of shell structures Arch. Comput. Meth. Eng. 4 3–61
M.L. Bucalem K.J. Bathe (1993) ArticleTitleHigher-order MITC general shell elements Int.J.Numer.Meth.Eng. 36 3729–3754 Occurrence Handle10.1002/nme.1620362109
D. Chapelle K.J. Bathe (1998) ArticleTitleFundamental considerations for the finite element analysis of shell structures Comput. Struct. 66 19–36 Occurrence Handle10.1016/S0045-7949(97)00078-3
D. Chapelle R. Stenberg (1999) ArticleTitleStabilized finite element formulations for shells in a bending dominated state SIAMJ.Numer.Anal. 36 32–73 Occurrence Handle10.1137/S0036142996302918
R. Duran E. Liberman (1992) ArticleTitleOn mixed finite-element methods for the Reissner–Mindlin plate model Math.Comput. 58 561–573
F.G. Flores E. Oñate F. Zaráte (1995) ArticleTitleNew assumed strain triangles for nonlinear shell analysis Comput.Mech. 17 107–114
P. Hansbo M.G. Larson (2000) Discontinuous Galerkin and the Crouzeix–Raviart element: Application to Elasticity Chalmers University of Technology Sweden
T.J.R. Hughes (1987) The Finite Element Method: Linear Static and Dynamic Finite Element Analysis Prentice-Hall Englewood Cliffs, NJ
C. Lovadina (1996) ArticleTitleA new class of mixed finite element methods for Reissner–Mindlin plates SIAM J.Numer.Anal. 33 2457–2467 Occurrence Handle10.1137/S0036142994265061
C. Lovadina (1998) ArticleTitleAnalysis of a mixed finite element method for the Reissner–Mindlin plate problems Comput. Meth. Appl. Mech. Eng. 163 71–85 Occurrence Handle10.1016/S0045-7825(98)00003-6
P.-B. Ming Z.-C. Shi (2001) ArticleTitleNonconforming rotated Q1 element for Reissner–Mindlin plate Math.Models Meth.Appl.Sci. 11 1311–1342 Occurrence Handle10.1142/S0218202501001343
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Arnold, D.N., Brezzi, F. & Marini, L.D. A Family of Discontinuous Galerkin Finite Elements for the Reissner–Mindlin Plate. J Sci Comput 22, 25–45 (2005). https://doi.org/10.1007/s10915-004-4134-8
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10915-004-4134-8