Abstract
Nonconvex minimax problems have attracted significant interest in machine learning and many other fields in recent years. In this paper, we propose a new zeroth-order alternating randomized gradient projection algorithm to solve smooth nonconvex-linear problems and its iteration complexity to find an \(\varepsilon \)-first-order Nash equilibrium is \({\mathcal {O}}\left( \varepsilon ^{-3} \right) \) and the number of function value estimation per iteration is bounded by \({\mathcal {O}}\left( d_{x}\varepsilon ^{-2} \right) \). Furthermore, we propose a zeroth-order alternating randomized proximal gradient algorithm for block-wise nonsmooth nonconvex-linear minimax problems and its corresponding iteration complexity is \({\mathcal {O}}\left( K^{\frac{3}{2}} \varepsilon ^{-3} \right) \) and the number of function value estimation is bounded by \({\mathcal {O}}\left( d_{x}\varepsilon ^{-2} \right) \) per iteration. The numerical results indicate the efficiency of the proposed algorithms.
Similar content being viewed by others
References
Al-Dujaili, A., Srikant, S., Hemberg, E., O’Reilly, U.: On the application of Danskin’s theorem to derivative-free minimax optimization. AIP Conf. Proc. 2070, 020026 (2019)
Berahas, A., Cao, L., Choromanski, K., Scheinberg, K.: A theoretical and empirical comparison of gradient approximations in derivative-free optimization. Found. Comput. Math. (2021). https://doi.org/10.1007/s10208-021-09513-z
Bertsimas, D., Nohadani, O.: Robust optimization with simulated annealing. J. Glob. Optim. 48(2), 323–334 (2010)
Beznosikov, A., Sadiev, A., Gasnikov, A.: Gradient-free methods with inexact oracle for convex–concave stochastic saddle-point problem. In: International Conference on Mathematical Optimization Theory and Operations Research, pp. 105–119. Springer (2020)
Bot, R.I., Böhm, A.: Alternating proximal-gradient steps for (stochastic) nonconvex–concave minimax problems (2022). arXiv:2007.13605
Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal–dual algorithm. Math. Program. 159(1–2), 253–287 (2016)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)
Daskalakis, C., Ilyas, A., Syrgkanis, V., Zeng, H.: Training GANs with Optimism. ICLR (2018)
Daskalakis, C., Panageas, I.: The limit points of (optimistic) gradient descent in min–max optimization. NeurIPS 31, 9236–9246 (2018)
Drezner, Z., Wesolowsky, G.O.: A maximin location problem with maximum distance constraints. AIIE Trans. 12(3), 249–252 (1980)
Foschini, G., Miljanic, Z.: A simple distributed autonomous power control algorithm and its convergence. IEEE Trans. Veh. Technol. 42, 641–646 (1993)
Gao, X., Jiang, B., Zhang, S.: On the information-adaptive variants of the ADMM: an iteration complexity perspective. J. Sci. Comput. 76, 327–363 (2018)
Gidel, G., Berard, H., Vignoud, G., Vincent, P., Lacoste-Julien, S.: A Variational Inequality Perspective on Generative Adversarial Networks. ICLR (2019)
Hajinezhad, D., Hong, M.: Perturbed proximal primal–dual algorithm for nonconvex non-smooth optimization. Math. Program. 176, 207–245 (2019)
Hettich, R.: A Newton-method for nonlinear Chebyshev approximation. In: Morel, J-M., Teissier, B. (eds.) Approximation Theory, pp. 222–236. Springer, Heidelberg (1976)
Ho, J., Ermon, S.: Generative adversarial imitation learning. NeurIPS 29, 4565–4573 (2016)
Huang, F., Gao, S., Pei, J., Huang, H.: Accelerated zeroth-order momentum methods from mini to minimax optimization. (2020). arXiv:2008.08170
Jin, C., Netrapalli, P., Jordan, M.I.: What is local optimality in nonconvex–nonconcave minimax optimization? PMLR 119, 4880–4889 (2020)
Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance designs. J. Stat. Plan. Inference 26(2), 131–148 (1990)
Kong, W., Monteiro, R.: An accelerated inexact proximal point method for solving nonconvex-concave min-max problems. (2019). arXiv:1905.13433
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. IEEE 86(11), 2278–2324 (1998)
Letcher, A., Balduzzi, D., Racaniere, S., Martens, J., Foerster, J., Tuyls, K., Graepel, T.: Differentiable game mechanics. J. Mach. Learn. Res. 20(84), 1–40 (2019)
Li, W., Chang, T., Chi, C.: Multicell coordinated beamforming with rate outage constraint part II: efficient approximation algorithms. IEEE Trans. Signal Process. 63, 2763–2778 (2015)
Liao, W., Hong, M., Farmanbar, H., Luo, Z.: Semi-asynchronous routing for large scale hierarchical networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2894–2898 (2015)
Lin, T., Jin, C., Jordan, M.I.: On gradient descent ascent for nonconvex–concave minimax problems. PMLR 119, 6083–6093 (2020)
Lin, T., Jin, C., Jordan, M.I.: Near-optimal algorithms for minimax optimization. PMLR 125, 2738–2779 (2020)
Liu, S., Lu, S., Chen, X., Feng, Y., Xu, K., Dujaili, A., Hong, M., OReilly, U.: Min–max optimization without gradients: convergence and applications to black-box evasion and poisoning attacks. PMLR 119, 6282–6293 (2020)
Lu, S., Tsaknakis, I., Hong, M., Chen, Y.: Hybrid block successive approximation for one-sided non-convex min–max problems: algorithms and applications. IEEE Trans. Signal Process. 68, 3676–3691 (2020)
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A: Towards deep learning models resistant to adversarial attacks. (2017). arXiv:1706.06083
Menickelly, M., Wild, S.: Derivative-free robust optimization by outer approximations. Math. Program. 179, 157–193 (2020)
Mohri, M., Sivek, G., Suresh, A.T.: Agnostic Federated Learning, pp. 4615–4625. PMLR (2019)
Namkoong, H., Duchi, J.C.: Stochastic gradient methods for distributionally robust optimization with f-divergences. NeurIPS 29, 2208–2216 (2016)
Nouiehed, M., Sanjabi, M., Huang, T., Lee, J., Razaviyayn, M.: Solving a class of non-convex min–max games using iterative first order methods. NeurIPS 32, 14934–14942 (2019)
Ostrovskii, D., Lowy, A., Razaviyayn, M.: Efficient search of first-order Nash equilibria in nonconvex-concave smooth min–max problems. (2020). arXiv:2002.07919
Pan, W., Shen, J., Xu, Z.: An efficient algorithm for nonconvex-linear minimax optimization problem and its application in solving weighted maximin dispersion problem. Comput. Optim. Appl. 78(1), 287–306 (2021)
Picheny, V., Binois, M., Habbal, A.: A Bayesian optimization approach to find Nash equilibria. J. Glob. Optim. 73(1), 171–192 (2019)
Qian, Q., Zhu, S., Tang, J., Jin, R., Sun, B., Li, H.: Robust optimization over multiple domains. Proc. AAAI Conf. Artif. Intell. 33, 4739–4746 (2019)
Rafique, H., Liu, M., Lin, Q., Yang, T.: Weakly-convex min–max optimization: provable algorithms and applications in machine learning. Optim. Methods Softw. 1–35 (2021)
Roy, A., Chen, Y., Balasubramanian, K., Mohapatra, P.: Online and bandit algorithms for nonstationary stochastic saddle-point optimization. (2019). arXiv:1912.01698
Sadiev, A., Beznosikov, A., Dvurechensky, P., Gasnikov, A.: Zeroth-order algorithms for smooth saddle-point problems (2020). arXiv:2009.09908
Schaback, R.: Multivariate interpolation and approximation by translates of a basis function. Ser. Approx. Decompos. 6, 491–514 (1995)
Thekumparampil, K., Jain, P., Netrapalli, P., Oh, S.: Efficient algorithms for smooth minimax optimization. NeurIPS 32, 12680–12691 (2019)
Wang, Z., Balasubramanian, K., Ma, S., Razaviyayn, M.: Zeroth-order algorithms for nonconvex minimax problems with improved complexities. (2020). arXiv:2001.07819
White, D.J.: A heuristic approach to a weighted maxmin dispersion problem. IMA J. Manag. Math. 7(3), 219–231 (1996)
Wu, Z., Jiang, B., Liu, Y., Dai Y.: Penalty approach for multiuser one-bit massive MIMO downlink with PSK signaling. IEEE ICASSP. (2022). arXiv:2110.04768
Xu, T., Wang, Z., Liang, Y., Poor, H.: Gradient free minimax optimization: variance reduction and faster convergence. (2020). arXiv:2006.09361
Xu, Z., Shen, J., Wang, Z., Dai, Y.: Zeroth-order alternating randomized gradient projection algorithms for general nonconvex–concave minimax problems. (2021). arXiv:2108.00473
Xu, Z., Zhang, H., Xu, Y., Lan, G.: A unified single-loop alternating gradient projection algorithm for nonconvex-concave and convex–nonconcave minimax problems. (2020). arXiv:2006.02032
Yang, J., Zhang, S., Kiyavash, N., He, N.: A catalyst framework for minimax optimization. NeurIPS 33, 5667–5678 (2020)
Zhang, J., Xiao, P., Sun, R., Luo, Z.: A single-loop smoothed gradient descent–ascent algorithm for nonconvex–concave min–max problems. NeurIPS 33, 7377–7389 (2020)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work is supported by National Natural Science Foundation of China under the Grant 12071279 and by General Project of Shanghai Natural Science Foundation (No. 20ZR1420600)
Rights and permissions
About this article
Cite this article
Shen, J., Wang, Z. & Xu, Z. Zeroth-order single-loop algorithms for nonconvex-linear minimax problems. J Glob Optim 87, 551–580 (2023). https://doi.org/10.1007/s10898-022-01169-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-022-01169-5
Keywords
- Nonconvex-linear minimax problem
- Zeroth-order algorithm
- Alternating randomized gradient projection algorithm
- Alternating randomized proximal gradient algorithm
- Complexity analysis
- Machine learning