Abstract
We present a model development framework and numerical solution approach to the general problem-class of packing convex objects into optimized convex containers. Specifically, we discuss the problem of packing ovals (egg-shaped objects, defined here as generalized ellipses) into optimized regular polygons in \( {\mathbb{R}}^{2} \). Our solution strategy is based on the use of embedded Lagrange multipliers, followed by nonlinear optimization. Credible numerical results are attained using randomized starting solutions, refined by a single call to a local optimization solver. We obtain visibly good quality packings for packing 4 to 10 ovals into regular polygons with 3 to 10 sides in all 224 test problems presented here. Our modeling and solution approach can be extended towards handling other difficult packing problems.
Similar content being viewed by others
References
Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J Chem Phys 27, 1208–1209 (1957)
Alt, H.: Computational aspects of packing problems. In: The Algorithmics Column, Bulletin of EATCS 118. European Association for Theoretical Computer Science. www.eatcs.org (2016). Accessed 25 Nov 2018
Anjos, M.F., Vieira, M.V.C.: Mathematical optimization approaches for facility layout problems: the state-of-the-art and future research directions. Eur. J. Oper. Res. 261, 1–16 (2017)
Bernal, J.D.: Geometrical approach to the structure of liquids. Nature 183, 141–147 (1959)
Birgin, E.G., Lobato, R.D., Martínez, J.M.: Packing ellipsoids by nonlinear optimization. J Glob Optim 65, 709–743 (2016)
Birgin, E.G., Lobato, R.D., Martínez, J.M.: A nonlinear programming model with implicit variables for packing ellipsoids. J Glob Optim 68, 467–499 (2017)
Black, K., Chakrapani, C., Castillo, I.: Business Statistics for Contemporary Decision Making, 2nd Canadian edn. Wiley, Toronto (2014)
Bennell, J.A., Oliveira, J.F.: The geometry of nesting problems: a tutorial. Eur. J. Oper. Res. 184, 397–415 (2008)
Bennell, J.A., Scheithauer, G., Stoyan, Y., Romanova, T.: Tools of mathematical modeling of arbitrary object packing problems. Ann. Oper. Res. 179, 343–368 (2010)
Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization: numerical results and industrial applications. Eur. J. Oper. Res. 191, 786–802 (2008)
Chaikin, P.: Thermodynamics and hydrodynamics of hard spheres: the role of gravity. In: Cates, M.E., Evans, M.R. (eds.) Soft and Fragile Matter: Nonequilibrium Dynamics, Metastability and Flow, vol. 53. Institute of Physics Publishing, Bristol (2000)
Cheng, Z.D., Russell, W.B., Chaikin, P.M.: Controlled growth of hard-sphere colloidal crystals. Nature 401, 893–895 (1999)
Chernov, N., Stoyan, Yu., Romanova, T.: Mathematical model and efficient algorithms for object packing problem. Comput Geom 43, 535–553 (2010)
Cohn, H.: Order and disorder in energy minimization. In: Proceedings of the International Congress of Mathematicians, pp. 2416–2443. Hindustan Book Agency, New Delhi (2010)
Conway, J.H.: Sphere packings, lattices, codes, and greed. In: Proceedings of the International Congress of Mathematicians, pp. 45–55. Birkhäuser Verlag, Basel (1995)
Dowsland, K.A., Dowsland, W.B.: Packing problems. Eur. J. Oper. Res. 56, 2–14 (1992)
Edwards, S.F.: The role of entropy in the specification of a powder. In: Mehta, A. (ed.) Granular Matter: An Interdisciplinary Approach. Springer, New York (1994)
Fasano, G.: Solving Non-standard Packing Problems by Global Optimization and Heuristics. Springer, Cham (2014)
Fasano, G., Pintér, J.D. (eds.): Optimized Packings with Applications. Springer, Cham (2015)
Galiev, S.I., Lisafina, M.S.: Numerical optimization methods for packing equal orthogonally oriented ellipses in a rectangular domain. Comput Math Math Phys 53, 1748–1762 (2013)
Hifi, M., M’Hallah, R.: A literature review on circle and sphere packing problems: models and methodologies. Adv Oper Res (2009). https://doi.org/10.1155/2009/150624
Ipopt: https://projects.coin-or.org/Ipopt. The developers of Ipopt are listed at https://projects.coin-or.org/Ipopt/browser/trunk/Ipopt/AUTHORS (2015). Accessed 25 Nov 2018
Jaeger, H.M., Nagel, S.R.: Physics of the granular state. Science 255, 1523–1531 (1992)
Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)
Kallrath, J.: Packing ellipsoids into volume-minimizing rectangular boxes. J Glob Optim 67, 151–185 (2017)
Kallrath, J., Rebennack, S.: Cutting ellipses from area-minimizing rectangles. J Glob Optim 59, 405–437 (2014)
Kampas, F.J., Pintér, J.D., Castillo, I.: Optimal packing of general ellipses in a circle. In: Takáč, M., Terlaky, T. (eds.) Modeling and Optimization: Theory and Applications (MOPTA 2016 Proceedings), pp. 23–38. Springer, Cham (2017)
Kampas, F.J., Castillo, I., Pintér, J.D.: Optimized ellipse packings in regular polygons. Optim Lett (2019). https://doi.org/10.1007/s11590-019-01423-y
Kellis, M: Computational biology: genomes, networks, evolution. An online textbook for MIT course 6.047/6.878. https://ocw.mit.edu/ans7870/6/6.047/f15/MIT6_047F15_Compiled.pdf (2016)
Kleijnen, J.P.C.: Design and Analysis of Simulation Experiments, 2nd edn. Springer, New York (2015)
Köller, J.: Egg curves and ovals. http://www.mathematische-basteleien.de/eggcurves.htm (2018)
Landau, R.H., Páez, M.J., Bordeianu, C.C.: Computational physics—problem solving with computers. Copyright © 2012 by Landau, Páez, and Bordeianu. Copyright © WILEY-VCH Verlag GmbH & Co. KGaA (2012)
Lodi, A., Martello, S., Vigo, D.: Heuristic algorithms for the three-dimensional bin packing problem. Eur. J. Oper. Res. 141, 410–420 (2002)
López, C.O., Beasley, J.E.: A heuristic for the circle packing problem with a variety of containers. Eur. J. Oper. Res. 214, 512–525 (2011)
Newman, M.: Computational Physics. CreateSpace Independent Publishing Platform, Scotts Valley (2012)
O’Neil, S.T.: A Primer for Computational Biology. Oregon State University Press, Corvallis (2017)
Pintér, J.D.: Global Optimization in Action. Kluwer Academic Publishers, Dordrecht (1996)
Pintér, J.D.: How difficult is nonlinear optimization? A practical solver tuning approach, with illustrative results. Ann. Oper. Res. 265, 119–141 (2018)
Pintér, J.D., Kampas, F.J., Castillo, I.: Globally optimized packings of non-uniform size spheres in Rd: a computational study. Optim Lett 12(3), 585–613 (2018)
Pisinger, D., Sigurd, M.: Using decomposition techniques and constraint programming for solving the two-dimensional bin-packing problem. INFORMS J Comput 19, 36–51 (2007)
Pusey, P.N.: Colloidal suspensions. In: Hansen, J.P., Levesque, D., Zinnjustin, J. (eds.) Liquids, Freezing and Glass Transition, vol. 51 of Les Houches Summer School Session, pp. 763–942. Elsevier, Amsterdam (1991)
Rintoul, M.D., Torquato, S.: Metastability and crystallization in hard-sphere systems. Phys. Rev. Lett. 77, 4198–4201 (1996)
Saunders, T.E.: Imag(in)ing growth and form. Mech. Dev. 145, 13–21 (2017)
Shannon, C.E.: A mathematical theory of communication. Bell Syst Tech J 27, 379–423 and 623–656 (1948)
Specht, E. http://www.packomania.com/ (2018)
Szabó, P.G., Markót, M.Cs, Csendes, T., Specht, E., Casado, L.G., García, I.: New Approaches to Circle Packing in a Square: With Program Codes. Springer, New York (2007)
Thompson, D.W.: On Growth and Form. Cambridge University Press, Cambridge (1917)
Uhler, C., Wright, S.J.: Packing ellipsoids with overlap. SIAM Rev 55, 671–706 (2013)
Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183, 1109–1130 (2007)
Weisstein, E.W.: “Lemniscate.” From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/Lemniscate.html (2019a)
Weisstein, E.W.: “Cassini Ovals.” From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/CassiniOvals.html (2019b)
Wikipedia. https://en.wikipedia.org/wiki/Oval (2018). Accessed 25 Nov 2018
Yamamoto, N.: Equation of egg shaped curve.html. http://www.geocities.jp/nyjp07/index_egg_E.html (2018)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kampas, F.J., Pintér, J.D. & Castillo, I. Packing ovals in optimized regular polygons. J Glob Optim 77, 175–196 (2020). https://doi.org/10.1007/s10898-019-00824-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-019-00824-8