[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Packing ovals in optimized regular polygons

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We present a model development framework and numerical solution approach to the general problem-class of packing convex objects into optimized convex containers. Specifically, we discuss the problem of packing ovals (egg-shaped objects, defined here as generalized ellipses) into optimized regular polygons in \( {\mathbb{R}}^{2} \). Our solution strategy is based on the use of embedded Lagrange multipliers, followed by nonlinear optimization. Credible numerical results are attained using randomized starting solutions, refined by a single call to a local optimization solver. We obtain visibly good quality packings for packing 4 to 10 ovals into regular polygons with 3 to 10 sides in all 224 test problems presented here. Our modeling and solution approach can be extended towards handling other difficult packing problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J Chem Phys 27, 1208–1209 (1957)

    Article  Google Scholar 

  2. Alt, H.: Computational aspects of packing problems. In: The Algorithmics Column, Bulletin of EATCS 118. European Association for Theoretical Computer Science. www.eatcs.org (2016). Accessed 25 Nov 2018

  3. Anjos, M.F., Vieira, M.V.C.: Mathematical optimization approaches for facility layout problems: the state-of-the-art and future research directions. Eur. J. Oper. Res. 261, 1–16 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bernal, J.D.: Geometrical approach to the structure of liquids. Nature 183, 141–147 (1959)

    Article  Google Scholar 

  5. Birgin, E.G., Lobato, R.D., Martínez, J.M.: Packing ellipsoids by nonlinear optimization. J Glob Optim 65, 709–743 (2016)

    Article  MathSciNet  Google Scholar 

  6. Birgin, E.G., Lobato, R.D., Martínez, J.M.: A nonlinear programming model with implicit variables for packing ellipsoids. J Glob Optim 68, 467–499 (2017)

    Article  MathSciNet  Google Scholar 

  7. Black, K., Chakrapani, C., Castillo, I.: Business Statistics for Contemporary Decision Making, 2nd Canadian edn. Wiley, Toronto (2014)

    Google Scholar 

  8. Bennell, J.A., Oliveira, J.F.: The geometry of nesting problems: a tutorial. Eur. J. Oper. Res. 184, 397–415 (2008)

    Article  MathSciNet  Google Scholar 

  9. Bennell, J.A., Scheithauer, G., Stoyan, Y., Romanova, T.: Tools of mathematical modeling of arbitrary object packing problems. Ann. Oper. Res. 179, 343–368 (2010)

    Article  MathSciNet  Google Scholar 

  10. Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization: numerical results and industrial applications. Eur. J. Oper. Res. 191, 786–802 (2008)

    Article  MathSciNet  Google Scholar 

  11. Chaikin, P.: Thermodynamics and hydrodynamics of hard spheres: the role of gravity. In: Cates, M.E., Evans, M.R. (eds.) Soft and Fragile Matter: Nonequilibrium Dynamics, Metastability and Flow, vol. 53. Institute of Physics Publishing, Bristol (2000)

    Chapter  Google Scholar 

  12. Cheng, Z.D., Russell, W.B., Chaikin, P.M.: Controlled growth of hard-sphere colloidal crystals. Nature 401, 893–895 (1999)

    Article  Google Scholar 

  13. Chernov, N., Stoyan, Yu., Romanova, T.: Mathematical model and efficient algorithms for object packing problem. Comput Geom 43, 535–553 (2010)

    Article  MathSciNet  Google Scholar 

  14. Cohn, H.: Order and disorder in energy minimization. In: Proceedings of the International Congress of Mathematicians, pp. 2416–2443. Hindustan Book Agency, New Delhi (2010)

  15. Conway, J.H.: Sphere packings, lattices, codes, and greed. In: Proceedings of the International Congress of Mathematicians, pp. 45–55. Birkhäuser Verlag, Basel (1995)

  16. Dowsland, K.A., Dowsland, W.B.: Packing problems. Eur. J. Oper. Res. 56, 2–14 (1992)

    Article  Google Scholar 

  17. Edwards, S.F.: The role of entropy in the specification of a powder. In: Mehta, A. (ed.) Granular Matter: An Interdisciplinary Approach. Springer, New York (1994)

    Google Scholar 

  18. Fasano, G.: Solving Non-standard Packing Problems by Global Optimization and Heuristics. Springer, Cham (2014)

    Book  Google Scholar 

  19. Fasano, G., Pintér, J.D. (eds.): Optimized Packings with Applications. Springer, Cham (2015)

    MATH  Google Scholar 

  20. Galiev, S.I., Lisafina, M.S.: Numerical optimization methods for packing equal orthogonally oriented ellipses in a rectangular domain. Comput Math Math Phys 53, 1748–1762 (2013)

    Article  MathSciNet  Google Scholar 

  21. Hifi, M., M’Hallah, R.: A literature review on circle and sphere packing problems: models and methodologies. Adv Oper Res (2009). https://doi.org/10.1155/2009/150624

    Article  MATH  Google Scholar 

  22. Ipopt: https://projects.coin-or.org/Ipopt. The developers of Ipopt are listed at https://projects.coin-or.org/Ipopt/browser/trunk/Ipopt/AUTHORS (2015). Accessed 25 Nov 2018

  23. Jaeger, H.M., Nagel, S.R.: Physics of the granular state. Science 255, 1523–1531 (1992)

    Article  Google Scholar 

  24. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)

    Article  Google Scholar 

  25. Kallrath, J.: Packing ellipsoids into volume-minimizing rectangular boxes. J Glob Optim 67, 151–185 (2017)

    Article  MathSciNet  Google Scholar 

  26. Kallrath, J., Rebennack, S.: Cutting ellipses from area-minimizing rectangles. J Glob Optim 59, 405–437 (2014)

    Article  MathSciNet  Google Scholar 

  27. Kampas, F.J., Pintér, J.D., Castillo, I.: Optimal packing of general ellipses in a circle. In: Takáč, M., Terlaky, T. (eds.) Modeling and Optimization: Theory and Applications (MOPTA 2016 Proceedings), pp. 23–38. Springer, Cham (2017)

    Google Scholar 

  28. Kampas, F.J., Castillo, I., Pintér, J.D.: Optimized ellipse packings in regular polygons. Optim Lett (2019). https://doi.org/10.1007/s11590-019-01423-y

    Article  MathSciNet  MATH  Google Scholar 

  29. Kellis, M: Computational biology: genomes, networks, evolution. An online textbook for MIT course 6.047/6.878. https://ocw.mit.edu/ans7870/6/6.047/f15/MIT6_047F15_Compiled.pdf (2016)

  30. Kleijnen, J.P.C.: Design and Analysis of Simulation Experiments, 2nd edn. Springer, New York (2015)

    Book  Google Scholar 

  31. Köller, J.: Egg curves and ovals. http://www.mathematische-basteleien.de/eggcurves.htm (2018)

  32. Landau, R.H., Páez, M.J., Bordeianu, C.C.: Computational physics—problem solving with computers. Copyright © 2012 by Landau, Páez, and Bordeianu. Copyright © WILEY-VCH Verlag GmbH & Co. KGaA (2012)

  33. Lodi, A., Martello, S., Vigo, D.: Heuristic algorithms for the three-dimensional bin packing problem. Eur. J. Oper. Res. 141, 410–420 (2002)

    Article  MathSciNet  Google Scholar 

  34. López, C.O., Beasley, J.E.: A heuristic for the circle packing problem with a variety of containers. Eur. J. Oper. Res. 214, 512–525 (2011)

    Article  MathSciNet  Google Scholar 

  35. Newman, M.: Computational Physics. CreateSpace Independent Publishing Platform, Scotts Valley (2012)

    Google Scholar 

  36. O’Neil, S.T.: A Primer for Computational Biology. Oregon State University Press, Corvallis (2017)

    Google Scholar 

  37. Pintér, J.D.: Global Optimization in Action. Kluwer Academic Publishers, Dordrecht (1996)

    Book  Google Scholar 

  38. Pintér, J.D.: How difficult is nonlinear optimization? A practical solver tuning approach, with illustrative results. Ann. Oper. Res. 265, 119–141 (2018)

    Article  MathSciNet  Google Scholar 

  39. Pintér, J.D., Kampas, F.J., Castillo, I.: Globally optimized packings of non-uniform size spheres in Rd: a computational study. Optim Lett 12(3), 585–613 (2018)

    Article  MathSciNet  Google Scholar 

  40. Pisinger, D., Sigurd, M.: Using decomposition techniques and constraint programming for solving the two-dimensional bin-packing problem. INFORMS J Comput 19, 36–51 (2007)

    Article  MathSciNet  Google Scholar 

  41. Pusey, P.N.: Colloidal suspensions. In: Hansen, J.P., Levesque, D., Zinnjustin, J. (eds.) Liquids, Freezing and Glass Transition, vol. 51 of Les Houches Summer School Session, pp. 763–942. Elsevier, Amsterdam (1991)

    Google Scholar 

  42. Rintoul, M.D., Torquato, S.: Metastability and crystallization in hard-sphere systems. Phys. Rev. Lett. 77, 4198–4201 (1996)

    Article  Google Scholar 

  43. Saunders, T.E.: Imag(in)ing growth and form. Mech. Dev. 145, 13–21 (2017)

    Article  Google Scholar 

  44. Shannon, C.E.: A mathematical theory of communication. Bell Syst Tech J 27, 379–423 and 623–656 (1948)

  45. Specht, E. http://www.packomania.com/ (2018)

  46. Szabó, P.G., Markót, M.Cs, Csendes, T., Specht, E., Casado, L.G., García, I.: New Approaches to Circle Packing in a Square: With Program Codes. Springer, New York (2007)

    MATH  Google Scholar 

  47. Thompson, D.W.: On Growth and Form. Cambridge University Press, Cambridge (1917)

    Google Scholar 

  48. Uhler, C., Wright, S.J.: Packing ellipsoids with overlap. SIAM Rev 55, 671–706 (2013)

    Article  MathSciNet  Google Scholar 

  49. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183, 1109–1130 (2007)

    Article  Google Scholar 

  50. Weisstein, E.W.: “Lemniscate.” From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/Lemniscate.html (2019a)

  51. Weisstein, E.W.: “Cassini Ovals.” From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/CassiniOvals.html (2019b)

  52. Wikipedia. https://en.wikipedia.org/wiki/Oval (2018). Accessed 25 Nov 2018

  53. Yamamoto, N.: Equation of egg shaped curve.html. http://www.geocities.jp/nyjp07/index_egg_E.html (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Castillo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kampas, F.J., Pintér, J.D. & Castillo, I. Packing ovals in optimized regular polygons. J Glob Optim 77, 175–196 (2020). https://doi.org/10.1007/s10898-019-00824-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00824-8

Keywords

Navigation